GLOBAL EDITION
October - November 2005
Number #7

Profile
Miranda K
Portfolio
Michael Portelly

COVER PHOTO BY PETER SYMES

Italy
Polluce Wreck
History
The Frogmen
Ecology
Mangrove
Science
Salt

BALI
Tulamben
contents

TULAMBEN
Bali, Indonesia
by Peter & Gunild Symes

PROFILE: Miranda Krestovnikoff
TV-presenter

OUT OF ITALY
THE AMAZING TALE ABOUT POLLUCE WRECK, ITALY
by Enrico Cappeletti

OUT OF ITALY
HISTORY: THE FIRST FROGMEN
by Sven Erik Jørgensen

MINI-THEME: Salt
SCIENCE
SALT OF THE SEA
by Michael Symes

MINI-THEME: Salt
SCIENCE
DRINKING SEAWATER
by Michael Symes

ROYAL TASMANIA
THE BLACK WATERS
by Gary Myors

PORTFOLIO & TRIBUTE TO
MICHAEL PORTELLY

MINI-THEME: Salt
MANGROVE CONSERVATION
by Bridget Hedderman

15

36

42

45

46

53

53

66

73

80

93

columns...

TECHNICAL MATTERS:
SOLO OR NOT?
by Leigh Cunningham

UW PHOTOGRAPHY:
MANIPULATION?
by Peter Symes

SHARK TALES:
JAWS - 30 YEARS
by Edwin Marcow

THE LIFE IN
ANEMONE CITY
by Michael Arvedlund

50

62

74

87

plus...

EDITORIAL
NEWS
NEW EQUIPMENT
BOOKS
CLASSIFIEDS & WET W I E R D
CARTE ONS

4

34

65

87

97

Further info on the Contacts page of our website: www.xray-mag.com

Tell a friend about X-Ray Mag
click here:
www.xray-mag.com/refer
Some of our dive location advertisers are probably not going to be too happy with me for this editorial. It is about terrorism. “Why bring up such a depressing subject, which may even make our clients think twice about coming out to see us?” I hear them say. Because it is in the back of our minds anyway, that’s why.

So, let’s face it instead of sweeping it under the carpet. The good news is that a lot of travelers are staring the terrorists in the face and refusing to be subdued by their destructive activities. Divers want to go diving no matter what, and this might be the very best antidote to terrorism—showing that we are not shaken... perhaps stirred, but not shaken.

A couple years ago, the devastating events on 9/11 changed our traditional views overnight of the world and our safety. Trips were cancelled and the airlines, the tourist industry and a lot of local dependants all suffered great losses. It is just human nature to react, to retract and to be scared when our picture of the world and of our daily lives is shaken to the core—down to the bedrock—as was the case back then.

Then came SARS (remember that, anyone?) topped off with a tsunami in the Indian Ocean that devastated areas from Asia to Africa and sent a shock wave throughout the dive and travel industry world-wide.

Recently, we had bombs in London and in Sharm el Sheikh. The Londoners had seen it all a couple of times before, and amidst the apprehension, they stood up and once more refused to let their way of life be affected.

Following the bombs in Sharm el Sheikh, which, while they were obviously meant to hurt Egypt’s all important tourism industry, paradoxically and sadly killed mostly a lot of Egyptian workers and damaged a lot of Egyptian property and businesses.

Even so, travellers didn’t want to cancel their trips. When travel agencies cancelled their flights, they had customers scolding them for giving in to terror. It seems that the general public has come to a new realisation that we can’t withdraw ourselves from this problem. We need to face it out there. We can’t hide at home anyway. And we shouldn’t.

But it isn’t what the George Bush’es, Tony Blairs and top brass military state on t.v. that will make the difference. We all know what they are going to say anyway, and we have heard all their standard phrases before. It is what you and I do that will make a difference. If we stand our ground, the terrorists will lose the war.

And we must not forget the other main part of the whole tragedy. It’s always the locals who get hurt the most from terrorism, directly as well as economically. They are left with the pain and devastated businesses when we tourists check onto our flights home and don’t come back.

Bali
In this issue, the travel story is about Bali. There are a thousand good reasons to go to Bali as there are to go to a lot of other fine dive locations in the world. Yet, given a range of choices, when we visited Asia earlier this year, we opted to go to Bali because we wanted to put the spotlight back on an island which was hit hard by a big terrorist attack a couple of years back. This may not be the most professional of reasons, but it has a global objective. There surely are numerous other locations out there that are also worthy and deserving of a visit with all the promotional spin-offs a major magazine article affords them.

But the positive changes in Bali since the terrorist attack speak volumes about the local people and their resilience to disaster. It is a story we are seeing a lot of around the world lately. Fanatical religiously-based terrorism will hopefully be confined to a limited space in history, just as the political terrorism we had in Europe in the 1970’s and 80’s did. Those terrorist activities are now pretty much a thing of the past.

What can we do? Dive on!

We salute you fellow travellers. ■

Brave New World
Brave New Citizens
Lots of new Marine Life

Arctic Marine Life Diversity & Density Higher than Expected

Explorers of the Arctic have found a surprising density and diversity of marine life - some creatures are new species yet to be identified.

High numbers of large Arctic squid, cod, jellies and other creatures have been found to be thriving in the extreme cold under a lid of ice currently 1-21 meters thick. These unexpected populations have been sheltered under the Arctic ice for millennia.

The US Coast Guard Cutter Healy sailed 24 scientists from the US, Canada, Russia and China on the 30-day Hidden Ocean expedition coordinated and funded by the US National Oceanic and Atmospheric Administration (NOAA). The independent Census of Marine Life involved eleven of these scientists in an unprecedented 10-year global scientific collaboration to inventory the biodiversity of the oceans in order to create a comprehensive portrait of life in the oceans.

The scientists of the expedition returned with thousands of specimens from the isolated ocean, the Canada Basin, as well as the Chukchi and Beaufort Seas. Some of these specimens appear to be new to science. The expedition’s early findings include the discovery of the first squid and octopus ever found in the area as well as new species of comb jellyfish, sea anemones and benthic bristle worms.

They also found two species of amphipods, or sand flea-like crustaceans, which were previously thought not to exist in Arctic environments. In addition, scientists found a sponge with a calcium-based skeleton at a surprising depth of 4,500 meters.

The expedition employed a number of tools and high tech equipment to gather specimens at 14 locations and data from depths to 3,300 meters below the ice, which will prove important in the study of the impact of climate change, energy exploitation, fishing and shipping. These tools included a remotely operated underwater vehicle, under-ice cameras and SCUBA divers, pelagic nets, an ice corer, benthic camera platforms and box cores. Scientists said that modern technology has enabled them to obtain comprehensive high-resolution mid-water and seafloor images of the area and its creatures like never before.

That’s a’spicey
NEWS
Can Sea Ice on the Rise in the Antarctic be due to Global Warming?

In a recent study, researchers from NASA have found that the increase of precipitation due to warmer air temperatures from greenhouse gases might actually be helping to increase the volume of sea ice in the Southern Ocean of Antarctica. It is evidence that there is a potential asymmetry between the North and South Poles. It may indicate that climate change may have different impacts on each end of the planet.

Counter to mainstream thinking that climate changes cause the melting of glaciers and sea ice in the Arctic, the study’s simulation findings suggest that a counterintuitive phenomenon is in effect in the Antarctic.

Warming climate typically leads to increased melting rates of sea ice cover and increased precipitation rates. But in the Southern Ocean, the increased precipitation is loading sea ice with additional snow, which then becomes so heavy that it pushes the Antarctic sea ice under the surface of the water. The snow then freezes and creates thicker sea ice. While the findings of the study were made through computer-generated simulations, plans to corroborate the findings through long-term ice thickness measurement on location is a goal for future research.
Deep-sea city of eels discovered

Large numbers of eels near a South Pacific deep-sea volcano surprise divers and researchers.

Hundreds of eels were discovered slithering around the seafloor of a volcano near American Samoa this spring. Nicknamed Eel City, marine scientists were astounded to find its huge eel population, which is a discovery that is said to be unprecedented in ocean research. The deep-sea community is the first known to be dominated by eels.

Researchers from the Scripps Institute of Oceanography and other institutions used submersibles to explore the volcano this spring on an expedition of the crater summit of Vailulu’u. Indeed, the scientists also found a new volcano growing in its crater summit.

The emerging 1,000-foot (333 meter) volcano located 2,000 feet (666 meters) below the surface is named Nafanua after the Samoan goddess of war. According to geologists at Scripps, Nafanua is growing 8 inches (20 cm) per day. It is not known what the eels are feeding upon, but it is known that there are thick mats of bacteria around the volcano that are suspected to serve as a food source.

Marine Biologist Dr Adele Pile from the University of Sydney said, “We were amazed to find not only a very rich hydrothermal system that had a very thick bacterial mat covering it, but living inside of these mats and all the craggles and all the little holes you could find in this brand new volcanic rock, were all these eels.”

Bacteria discovered in the Antarctic

Bacteria are known to survive and indeed thrive in environments of extreme heat such as hot springs. Now they have been found to thrive in environments of extreme cold as well. Researchers accidentally discovered large numbers of bacteria and clams on the ocean floor in March while exploring the Antarctic waters that became accessible after the 2002 collapse of the Larsen B Ice Shelf.

Found at a depth of 2,800 feet (933 meters) in an area isolated under ice for over 10,000 years, the bacteria form a white sheet up to one centimeter thick upon which clusters of clams lie. The discovery leads scientists to theorize that the chance of life in even more extreme environments may be possible. In addition, the bacteria may hold secrets to life without photosynthesis or properties such as enzymes that could be used in industry for various needs. It is not known at this time how the bacteria survive or what their food source is.

Scientists discover new Antarctic underwater ecosystem near volcano

A vast ecosystem has been discovered on the seafloor under what was once the Larsen B Ice Shelf, which collapsed in 2002. Scientists, Amy Leventer and Jimmy Maritz of Colgate University, used an underwater camera attached to their boat in may 2004 to capture video images of what appeared to be large mats of bacteria supporting colonies of clams 20-30 centimeters in diameter.

The ecosystem, located at a depth of 850 meters under the ice, is known as a cold seep or cold vent community and is fed by chemical energy rather than photosynthesis. It is thought that methane from deep underwater vents provides the energy source of the ecosystem.

The research by Leventer’s team was sponsored by grants from the National Science Foundation to Hamilton, Colgate, Southern Illinois University and Montclair State University.

Canada to patrol illegal fishing in Arctic waters for first time

In an attempt to clamp down on illegal fishing in the far northern regions of Canada, the federal government will send a frigate to patrol the waters of the Arctic for the first time.

With growing pressure to curb over fishing by foreign vessels in the region outside of the 200-mile exclusive economic zone off the East Coast of Canada, the Canadian government is sending the HMCS Fredericton from Halifax to the Davis Strait, Pond Inlet and Iqaluit to see who is fishing in the area and to make their presence and sovereignty known. Authorities want better monitoring and control over vessels operating in international waters.

The trip is not related to an ongoing dispute that Canada has with Denmark on the claim over Hans Island located between Ellesmere Island and Greenland.
PADI announces new Ecotourism Training Center in Tsunami hit area of Thailand

PADI Asia Pacific announced the opening of a new Ecotourism Training Center (ETC) on August 4th in Khao Lak, which was one of the hardest hit areas of the tsunami last year in Thailand. The centre, which was the brainchild of US expat Reid Ridgway and Swiss national Pascal Hernikot, a Khao Lak tsunami survivor, was built in response to the devastation of the area and local population by the tsunami.

The mission of the centre is to provide professional diving instruction to young men and women affected by the tsunami so they can develop careers in diving and tourism. It aims to help revive the once thriving international ecotourism destination for divers and naturalists. According to founders Ridgway and Hernikot, many of their friends in the diving industry in Khao Lak lost everything - homes, jobs, possessions, businesses and many tragically lost their lives.

The centre will focus on three areas in its professional curriculum: computers, dive training and English language. The programme emphasizes environmental education and sustained tourism. Over nine month, students ages 16 to 41 can gain certification as a divemaster or can be upgraded to open water instructor if they are already divemasters. Students will receive 6000 baht per month from the ETC for living expenses during the programme.

Ridgway and Hernikot realized their dream of the eco-tourism centre with the help of PADI who was one of the first industry leaders to stand up and support the programme.

The eco-tourism centre now houses a fully accredited English language component provided by the TEFL Teacher Training language institute in Phuket as well as a computer lab, video editing suite, projection screens, dive gear maintenance laboratory and two long tail boats equipped for diving and research.

The first year students, which number 12, will document their entire experience on video in order to produce a film to be released at the one-year anniversary of the tsunami disaster. Ridgway said the film would show the remarkable resilience of the local community and culture as they recover and rebuild. He said it would also highlight the natural beauty above and below the sea in Thailand to encourage travellers to return to vacation in the area.

Although the non-profit organization is privately funded, the ETC continues to seek funding from individuals and businesses to fund student scholarships and help make the program a permanent yearly course for the young people of the region. For more information, visit: www.etcth.org.

Speed limits for dolphins

In Ireland, the Department of the Marine has established new speed limits for boats and other sea vessels in order to protect the growing number of dolphins and whales present in Irish waters.

Whale-watching boats must not exceed seven knots and must stay 100 metres away from the animals. The department also requires these boats to be licensed passenger vehicles. They must not attempt to coral the whales or dolphins between boats, nor are they allowed to swim with the animals.

The dolphin and whale watching industry brought in 12.3 million euros in tourism revenue in 2003. According to marine biologists it is becoming more and more important to protect dolphins and whales from harassment. The new regulations should provide the mammals with more protection.

Don’t swim with the dolphins

In Costa Rica, officials have banned the activity of swimming with dolphins or whales effectively closing down a highly criticized growing tourism industry according to an environmental group. With the new regulations effective in July, even researchers are not allowed to swim with the marine animals, nor are they allowed to hold the mammals in captivity.

Tourists pay top dollar in Mexico and the Caribbean to swim with dolphins held in captivity. Environmentalists who feared that the 45 sea tourism companies in the Costa Rica would also start advertising swimming with the animals, proposed the rules to avoid this development.

PADI Introduces Diving Podcast

The Professional Association of Diving Instructors (PADI) announced that it plans to produce a new podcast programme devoted to scuba diving. The world-wide scuba diving organization is seeking contributors for possible broadcast.

According to a PADI spokesperson, PADI wants to involve divers from all over the globe. Content of the future shows cover diving training, dive travel insights from divers and dive operators, environmental issues, the latest dive conditions from specific dive locations, dive celebrity interviews, first aid and safety information, continuing education and entertaining news from divers all over the world.

While other podcasts cover overload issues. PADI’s Scuba Chat plans to cover the underwater world including stories from returning divers, unique diver behaviour, effects of hurricanes on shipwrecks and other serious and fun issues.

DEMA Show will alternate between Las Vegas & Orlando

The American trade show for the diving industry, Diving Equipment and Marketing Association (DEMA), has announced that for the next six years it will be alternating its venue between Las Vegas and Orlando, Florida. A spokesman said it will be dropping Houston in Texas – the venue of last year’s show. The organisers also said that after this year the four-day show will be at the end of October or the beginning of November. This year’s show will be held in Las Vegas from 4-7 October.
An exhibition, "Treasures of the Nanhai", in Malaysia featured artefacts from nine 9th and 10th century shipwrecks. In September, collectors had, for the first time, the opportunity to buy a valuable piece of history including thousands of Ming blue and white, celadon and underglaze black ware. Many of the artefacts date from the Song, Yuan, Ming and Qing dynasties. The Chinese, Thai and Portuguese shipwrecks were discovered off the coast of Malaysia by Nanhai Marine Archaeology, a company led by Swedish naval architect Sten Sjostrand. The Nanhai, which means Southern Seas in Chinese, was part of the Asian Maritime Silk Route that connected China with Southeast Asia, India and the Middle East. Silk, porcelain, pottery and other exports were traded on this route. Thirty percent of the recovered items have been donated to the Department of Museums and Antiquities according to Sjostrand, and money earned from the sale of the relics will be used to fund more research and excavations. The aftermath of Hurricane Katrina has fortunately left Odyssey in relatively good shape. According to officials, the company’s building in which the attractions are housed experienced no flooding, fires or looting. In addition, Odyssey was able to remove all irreplaceable artefacts and valuables such as coins safely from New Orleans to Florida. Tampa-based employees have offered their homes and resources to help the staff and families in the New Orleans location.

Millions of Sweetlips Can’t be Wrong
Raja Ampat is our favorite!

2005 Raja Ampat
Indonesia Dive &
Photography Trips

2004 trip participants won free trips with their photos. See the winners on our website.

Join our 2005 limited participation dive & underwater photography trips aboard SMY Ondina,
2004 Neptune Award winner for "Best Dive Cruise"
call USA 817.626.0636

www.cityseahorse.com/rajaampat

Priceless artefacts salvaged from ancient shipwrecks auctioned

COURTESY OF ODYSSEY'S SHIPWRECK & TREASURE ADVENTURE

www.shipwreckandtreasure.com

Odyssey’s Shipwreck & Treasure Attraction Opens In New Orleans

Odyssey Marine Exploration, Inc. a leader in the field of deep-ocean shipwreck exploration has opened an interactive shipwreck and treasure attraction in New Orleans’ French Quarter. Located in the Jax Brewery, Odyssey’s Shipwreck & Treasure Attraction will reveal the compelling stories behind some of the world’s most famous shipwrecks, their treasure and historical artifacts, and will allow visitors to experience the adventure and excitement of deep-ocean shipwreck exploration through multiple hands-on exhibits. The attraction will feature the SS Republic, a Civil War-era ship with an intriguing connection to New Orleans. The ship sank in a hurricane off the coast of Georgia while sailing from New York to New Orleans in 1865. Odyssey discovered the Republic nearly 1,700 feet below the surface of the Atlantic Ocean in the summer of 2003 – nearly 138 years after the ship went down. More than $1,000 gold and silver coins, and approximately 13,000 additional artifacts, were recovered in the world’s most extensive deep-ocean archaeological excavation. The aftermath of Hurricane Katrina has fortunately left Odyssey in relatively good shape. According to officials, the company’s building in which the attractions are housed experienced no flooding, fires or looting. In addition, Odyssey was able to remove all irreplaceable artefacts and valuables such as coins safely from New Orleans to Florida. Tampa-based employees have offered their homes and resources to help the staff and families in the New Orleans location.
British team rescues Russian submariners

Rescue of trapped submersibles prompts Russia to buy Scorpio underwater robots

After a British rescue team operated by James Fisher Rumic Ltd used a Scorpio underwater robot to free a Russian mini-submarine with seven submariners trapped underwater for three days in the Pacific Ocean, the Russian navy planned to purchase two unmanned devices as well as technical support. According to officials, the sophisticated Scorpio-45 underwater robot managed to free the Russian Priz AS-28 vessel snagged in nets and equipment at 190 meters with just a few hours of oxygen supply left for its sailors. The devices are not compatible with Russian technology according to authorities, but the two robots will be handled by Russian experts.

Underwater archaeologists search for 16th century Spanish wreck

In the early 1500s, a Spanish lawyer and explorer named Lucas Vazquez de Ayllon, sailed down the southeastern coast of North America on a ship called The Capitana. De Ayllon led the expedition to the Georgetown area in an attempt to settle a colony there. It is thought that aboard his vessel were men, women and children as well as a large cargo of supplies. The galleon met its demise at the mouth of Winyah Bay according to archaeologists who are part of a long-term project to map around 11,000 miles (22,000 km) of inland and over 187 miles (360 km) of South Carolina coastline in search of several historic wrecks.

The project received US$6,000 in private donations to conduct the initial search for The Capitana. The archaeologists from the Maritime Research Division of the South Carolina Institute of Archaeology and Anthropology worked from a 25-foot research vessel in Winyah Bay for three weeks in September. Experts say that the Capitana was most likely beaten apart, but more sturdy objects such as anchors, ceramics and a load of olive oil would remain.

According to experts, passengers of the Capitana escaped before the ship went down with its cargo of tools and food. De Ayllon led his expedition south in 1526 to establish a colony in what is now called Sapelo Island, Georgia, but the effort failed after de Ayllon and the colonists died of fever.

The project covers a very large area and could take months or years to search, so long-term funding is being sought from the National Oceanic and Atmospheric Administration to continue the research.

Excavations of the ancient underwater city of Limantepe resume

Ottoman relics believed to be hidden here

Renewed efforts to excavate the ancient sunken city of Limantepe have begun according to the Dean of Ankara University Professor Nusret Aras. The underwater site is located near the coastal town of Urla in the province of Izmir. Authorities say the excavation will take a lot of hard work and painstaking conservation by the Underwater Research Crete. The president of the Limantepe Archeological Excavation, Professor Hoyat Erkanal, said that plans now are to launch the excavation with the support of the Urla municipality. Erkanal said that there is a need for a museum in Urla to preserve and display the artefacts recovered from the site. Although the Ministry of Culture has held the opening of new museums in the country and plans to close some of the smaller ones, the Mayor of Urla Selçuk Karaosmanoğlu supports the initiative.

Diving in a Quarry?

New technical dive training site at inland location in Wales

The newly named National Diving and Activity Centre has been purchased by Exhibitor Limited who plan to develop the site, which is located in a quarry, into one of the UK’s best diving centres. The new centre offers divers some of the safest inland diving in the country.

Depths range from 6 to 80 metres according to the diving manager of the centre who added that safety was a primary concern at the centre. To this end, the centre has allied itself with the Royal Society for the Prevention of Accidents during the course of development. Permanent signage above and below the surface marks deep water as well as the deep end of the quarry.

Future plans of the new owners of the 55 acre site include new hotel accommodations, road and access entrance, log cabins and additional outdoor recreation activities. Some of the activities to be introduced include zipline, abseiling and 4x4 off road weekends.

The centre has extensive training and rescue facilities including qualified first aid personnel, new classrooms, educational equipment and technology, a 3 metre training tank, shop, café, restrooms and changing rooms. The centre also has full gas blending facilities for nitrox and trimix. Located 2.15 hours drive from the Hammersmith Fly Over in London, the centre is a member of the Inland Dive Site Forum, which includes other members such as Capernwray, Horsea Island Dive Centre, Stoney Cove, Vobster Quarry and Wraysbury. For more information, visit: www.ndac.co.uk

Spanish Galleon

Divers excavate an ancient underwater city at Limantepe

This image taken by the Scorpio 45 during the rescue shows the Russian Priy submersible and the mesh of underwater nets and steel cables that trapped it 190 meters below the surface with 7 sailors inside.
Sea turtles dying by the thousands in Nicaragua

Green sea turtles protected by Costa Rica and other neighboring countries are being killed by the thousands by the unregulated and unsustainable commercial fishing industry in Nicaragua. A study by the Wildlife Conservation Society of the Bronx Zoo found that tagged turtles in Nicaragua have little more than a 50 percent chance of surviving to the next year. Researchers say that if turtle fishing is not drastically reduced soon, the sea turtles will vanish in a few years. It is estimated by CITES, the Convention on International Trade in Endangered Species, that 11,000 green sea turtles are harvested annually by Nicaragua for local consumption. Experts say that a quota between 1,000-3,000 turtles needs to be put into place to save the species.

According to scientists, green turtles are slow-growing and slow to mature. They are the only herbivorous species of sea turtle and travel throughout the Caribbean to Nicaragua to graze the rich sea grass beds there. Scientists warn that removing so many adults and large juveniles from the population spells disaster for the species. This includes the adult turtles from Tartuguero in Costa Rica, well known for the turtle nesting beaches located on its coast. Scientists believe that the largest green turtle populations remain in the region.

Saving Endangered Sea Turtles

Sea turtles in Mexico are making a comeback

The beaches of northeastern Mexico are the only nesting ground for the world’s most endangered sea turtle, the Kemp’s Ridley. For millions of years, these turtles have returned to the beaches now known as La Pesca, Tepehuanes and Rancho Nuevo. The female Kemp’s Ridleys lay their eggs here each year, but only one out of a thousand hatchlings make it to adulthood. However, with the success of a joint project by the U.S., Mexico, biologists and the shrimping industry, these turtles are no longer harvested as food by Mexican communities.

More than 10,000 nests with an average of 100 eggs per nest have been successfully transported to nearby corals and protected until they hatched. Workers from the Kemp’s Ridley Recovery Project have patrolled the beaches and collected the eggs. In support of the project, the American shrimping industry helped build a community center and ceramics workshop in the center of Tepehuanes where locals can create hand-crafted turtle related pottery to sell instead of catching sea turtles. The money they make on these products offsets the income lost from the prohibition of turtle harvesting. Authorities from the shrimping industry said that industry leaders realized the importance of helping the sea turtle make a come back since their disappearance would negatively affect shrimp stocks in the area.

Turtles on jellyfish trail set a course for Scotland

Large numbers of leatherback turtles are headed toward Scottish waters following a surge of jellyfish, their main food source, which is traveling northward in the next few months. The moon jellyfish have experienced a huge bloom in the region where tens of thousands of jellyfish are washing up on the shores. It is not known for certain why the jellyfish bloom is occurring, but scientists fear it is just another sign of global warming since increasing temperatures produce more planktonic life, the food source of the jellyfish. The news of the coming of the leatherbacks has prompted calls for sightings. Marine biologists say that the turtles should reach Scotland by way of the Gulf Stream. The leatherback turtles, which can measure up to eight feet long (2.5 meters), nest in Trinidad and Florida, but can also tolerate the cooler temperatures of the waters around Scotland. Leatherback turtles have a slightly flexible “rubbery” shell and are the largest living turtle. At adulthood, the turtles’ core body temperature in cold water is several degrees cooler than that of a living sea turtle. At adulthood, the turtles’ core body temperature in cold water is several degrees cooler than that of a living sea turtle.

Sciatica Feature

The moon jellyfish have experienced a huge bloom in the region where tens of thousands of jellyfish are washing up on the shores. It is not known for certain why the jellyfish bloom is occurring, but scientists fear it is just another sign of global warming since increasing temperatures produce more planktonic life, the food source of the jellyfish. The news of the coming of the leatherbacks has prompted calls for sightings. Marine biologists say that the turtles should reach Scotland by way of the Gulf Stream. The leatherback turtles, which can measure up to eight feet long (2.5 meters), nest in Trinidad and Florida, but can also tolerate the cooler temperatures of the waters around Scotland. Leatherback turtles have a slightly flexible “rubbery” shell and are the largest living turtle. At adulthood, the turtles’ core body temperature in cold water is several degrees cooler than that of a living sea turtle.
Stopping illegal fishing the scientific way

New initiatives give illegal fishermen an alternative way to make a living

Australian scientists are funding a new project to curb illegal fishing in Australian waters. It is estimated that 20,000 sharks are taken each year by impoverished fishermen from Indonesia who sell the creatures on the Asian market where they are bought by an increasingly affluent Chinese population. The program gives these fishermen an alternative source of income through the harvest of seaweed and sponges.

According to Australian experts, seaweed, when dried, is a valuable commodity. It is used in industrial products and toothpaste. Already the program funded by Arafura Timor Research Facility in Darwin has helped up to 60 families in Roti Island near Timor to make a new living harvesting seaweed and cultivating sponges.

HMAS Brisbane

The HMAS Brisbane has been scuttled as part of an artificial reef project in Australia. Nicknamed ‘The Steel Cat’, the HMAS Brisbane was a Charles F. Adams class guided missile destroyer constructed by the Defoe Shipbuilding Company in the USA. The third ship of this class to be purchased by the Royal Australian Navy, the 133 metre former warship is now part of a reef park off the Sunshine Coast. Divers can explore the wreck and its passageways through access holes that lead to the forward engine room, boiler room and the ship’s interior including the living and sleeping quarters used by the crew during the ship’s service from 1967 to 2001. The HMAS Brisbane completed two tours of duty in Vietnam, the first in 1969, and the second in 1971. It was one of four Australian warships to serve in the first Gulf War in 1990 and 1991.

Sharm el Sheikh blast has modest impact on dive tourism

Officials report that the affect of the bombing attack of a resort in Sharm el Sheikh, Egypt, has not had the powerful effect on dive tourism as feared. Dive centres in Sharm report that diving, while slightly lighter than normal at this time of year, is continuing. Travel agents in Europe say that there have been relatively few cancellations and that most European travellers are not changing their travel plans to the area.

Egyptian authorities say that travellers are not as easily scared away as they were after the 1997 bombing that killed 58 tourists at a pharaonic temple in the city of Luxor. This tragedy badly affected Egypt’s economy.

Seaweed

The death toll of the recent attacks in Sharm reached 64. However, government officials say that the tourism flow is far more resilient to these events than in previous years. It is thought that foreigners are now more used to attacks in other parts of the world and are now harder to scare. In addition, economists say that Egypt’s economy this year is stronger and more resilient due to government reform programs, tax cuts, rising business confidence, high oil prices and healthy growth. The rest of the country is so far unaffected.
Researchers Find Recovering Coral Reef

A team of researchers has made a rare, valuable and positive find off the coast of Antigua: the reef is recovering fast from an epidemic of “white-band” disease that attacked the region’s unique, tree-like elkhorn coral and most of the coral reefs in the Caribbean are in pretty bad shape.

But Antigua’s North Sound, currently under study by Dr. McManus, director of the University of Miami’s National Centre for Caribbean Coral Reef Research (NCORE) and his team, boasts an “immense” surface area with good signs of recovery. Massive thickets of elkhorn coral are growing up to 14 feet long, with lots of holes and therefore the ability to support very large volumes of fish. “Most of the predatory fish are there, along with herbivorous fish that eat algae, and we’re finding a good mix of juvenile fish, which is a sign that this population will recover” says Dr. McManus.

However, the North Sound has a way to go, Dr. McManus cautions. For example, researchers counted only two groupers in a five-kilometre area where there should have been thousands. Rebuilding the fish community is a vital but complex task, that needs a plan.

New Coral Reefs Found off Korea

The Korea National Park Authority has announced the discovery of a coral colony off the coast of Namhae County, South Gyeongsang province. It is the first time a coral colony of this size has been found in Korea. Lying four meters below the sea’s surface, the colony is about five meters long and four meters wide. Among its exotic coral species is the Corynactis, which had never before been found in Korea.

But Antigua’s North Sound, currently under study by Dr. McManus, director of the University of Miami’s National Centre for Caribbean Coral Reef Research (NCORE) and his team, boasts an “immense” surface area with good signs of recovery. Massive thickets of elkhorn coral are growing up to 14 feet long, with lots of holes and therefore the ability to support very large volumes of fish. “Most of the predatory fish are there, along with herbivorous fish that eat algae, and we’re finding a good mix of juvenile fish, which is a sign that this population will recover” says Dr. McManus.

However, the North Sound has a way to go, Dr. McManus cautions. For example, researchers counted only two groupers in a five-kilometre area where there should have been thousands. Rebuilding the fish community is a vital but complex task, that needs a plan.

Coral Reefs Relocated in India

Marine biologists claim success in coral relocation

300 corals are thriving in the Gulf of Kutch. These specimens were relocated by a group of marine biologists from the National Institute of Oceanography over the past three years. The work was done to minimize the damage caused to the marine ecology of the area by undersea petroleum pipelines and sedimentation. The corals were moved one kilometre away from their original home.

Scientists monitoring the project reported in January 2005 that the corals are now healthy and growing. Funded by Essar Oil Ltd, the relocation project is said to have saved the species. Essar Oil will be building a new refinery in Vadinar in Jamnagar and pipelines would have damaged the coral living at the location.

Experiments in relocating corals have not been successful in the past. With the success of the Gulf of Kutch relocation, biologists are encouraged to take more initiatives in the Indian Ocean.

Scuba thief dies after chase

Maritime officials in the Philippines reported that a patrol vessel discovered four divers looting a shipwreck in Subic Bay. One diver jumped into the water from the small boat at the site where the USS New York sank in 1941. The diver was critically injured in his attempt to escape. He died on the way to the hospital. A second diver was arrested by officials at the scene and three others are missing. Officials continue to search for the missing divers.

The USS New York was scuttled in 1941 by American forces in an attempt to prevent the invading Japanese from captur.
New underwater eyes spy unknown sea creatures

With the aid of a new camera which operates on dim red light, ocean researchers are gaining a new revealing look at the deep sea in the Gulf of Mexico. After Hurricane Katrina passed over the area, oceanographers from Harbor Branch Oceanographic Institution in the U.S. aboard the National Oceanic and Atmospheric Administration Research Vessel Seward Johnson are studying the area with new eyes and finding a variety of deep-dwelling shellfish that produce their own light as well as other creatures with surprising abilities to see ultraviolet light. In addition, a previously unknown type of squid that is six feet long showed aggression towards the camera. The 200-pound camera was left at the bottom of the sea before Hurricane Katrina hit the area. When scientists returned, they found the camera upended not by the storm, but by some large predator upset by the camera. No recording of the animal was made as the battery had run out. But sharks have been filmed attacking the camera before. Studies in the past used cameras with bright white light or caught animals in nets. The drawback to this technique is that the white light blinds these creatures. The new camera’s red light does not as it seems that they are unable to see it.

But the most exciting aspect of the new discoveries for scientists is the investigation of why some creatures see ultraviolet light as it is thought that there is no ultraviolet light at such deep depths. Researchers wonder what the animals might be doing with this ability. One theory suggests that they might be able to detect other luminescent creatures with this sensitivity.

Fluorescent sharks found in Gulf of Mexico

Scientists of the Deep Scope 2005 expedition run by the National Oceanic and Atmospheric Administration discovered a new species of glowing shark. A photo of the three-foot long (one-meter-long) creature was captured on August 22 and provided visual evidence of a fluorescent chain cat shark on the sea floor of the Gulf of Mexico. The footage was taken shortly after Hurricane Katrina passed over the area.
U.S. to ban Caspian beluga caviar

It is expected that the U.S. government will ban the import of beluga caviar from the Caspian Sea due to the creatures dangerously low numbers and decreasing size. According to authorities from the Division of Scientific Authority of the U.S. Fish and Wildlife Service, states surrounding the Caspian Sea have failed to file a joint management plan for the endangered beluga sturgeon. These states include Azerbaijan, Kazakhstan, Russia, Turkmenistan and Iran.

The beluga sturgeon is the largest of its kind and the most prized. Due to overfishing, it is now one of the rarest. At $3000 a pound in the U.S., the caviar of the beluga is the world’s most expensive wildlife food product.

Beluga population in the Caspian Sea dropped 50 percent in the last five years. The Black Sea beluga population dropped by 20 percent according to the Convention on the International Trade of Endangered Species of Fauna and Flora, an organization of the United Nations based in Geneva.

The two main producers of beluga caviar are Iran and Kazakhstan. Beluga is harvested at sea in Iran and fished in its last natural spawning ground in the Ural River in Kazakhstan. Two hatcheries in the main town on the Ural failed for the first time to catch a single female in their regular activities to restock the species, according to officials. In addition, the beluga sturgeon is shrinking. Once found at nearly 20 feet long or 6 meters and weighing 1.8 tons, the few belugas caught now weigh about 150 kilograms. Authorities claim that overfishing in the 1980s and poaching since the Soviet Union unravelled contributed to the change in the creatures size. Efforts have been taken by the endangered species organization to place quotas on how much beluga caviar can be exported from Kazakhstan and Iran.

In the past decade, fishermen have rarely seen mid-size beluga sturgeon like the one pictured here, captured from the Volga River in Russia. Photo by Hans-Jurgen Burkard/Bilderberg. Courtesy of Caviar Emotion.

Simulated dive leads to the bends

A mother of four, Rachael Clare, suffered delayed decompression illness after participating in a simulated dive in a hyperbaric chamber in Portland, Australia. The simulation took Clare and two other divers as well as a dive instructor to 39 metres where a written test was completed at the bottom and then a return to normal pressure was achieved within 35 minutes. Clare said she felt fine after the simulation but began experiencing increasing pain in her left leg and knee within an hour.

Clare received treatment at the Alfred hospital and Portland’s Professional Diver Services and has recovered completely. The diver’s rare reaction has reminded other scuba divers to be more attentive to their health while diving even while all appropriate precautions are taken and guidelines followed. Scuba divers are encouraged to be aware of the risks involved in diving and seek immediate medical attention when they feel sick.

New deep sea creatures discovered near Australia

Unidentified deep sea creatures and underwater canyons off the Western Australian coast have been uncovered by new main research at depth of up to 1.5 kilometers. A research vessel mapping the ocean floor on the continental shelf found the new fish and coral species. Scientists hope the discoveries will lead to a better understanding of the evolution of marine animals. According to government officials, the research will be used in determining which marine areas need protection.
Discover Tulamben Diving Paradise

Bali

Text by Peter & Gunild Symes, Photos by Peter & Gunild Symes and Jesper Meyer

Dark grey
Usually a colour associated with dull. Not here. The dark lava sand creates a perfect neutral backdrop to make all the colours of corals and critters stand out beautifully. It also dampens the often harsh and bleaching tropical sunlight into something of a less eye-squinting exercise to enjoy. I am reporting from the slopes of the house reef at Scuba Seraya at Tulamben on Bali, and I am equipped with the usual oversized camera gear and curiosity... oh, and a local guide with a fabulous eyesight and an ability to tease out and point out even the smallest and best camouflaged creatures. He never ceased to amaze me. I have come to fancy house reefs.

Tulamben
Admittedly, in some overcrowded places, the reefs can be as worn as the grass in a park after a rock concert. But mostly, these areas provide you with constant round-the-clock access to a location. You get to know and learn where to find all the small critters. It gives you the chance to get comfortable with the surroundings and establish a work process. You can always come back and shoot some more film, redo a shot in another fashion, do various experiments and be a little creative. Well, those were my thoughts about it anyway, although I also fancy seeing the variety and different locations to...
Tulamben proved to provide us with ample opportunities to do both. It is a site that holds quite a reputation among dive aficionados. Once we were on location ourselves, it was obvious why. It is said that it is the single best place in Bali to find rare and unusual animals. Even on my first acclimatisation dive, I saw three different varieties, or species, of sea horses, half a dozen different nudibranchs and numerous juvenile paper frogfish, gobies and blennies.

The house reef, Seraya Secrets, is the perfect place for macro-photographers and naturalists because it never runs out of surprises, and it is so easily accessible right there in front of the resort. It starts with a shallow plateau where we could often find many different species of scorpionfish willingly posing for our lenses, or perhaps just trusting their camouflage to hide them from us. Some 15-20m from the beach, the bottom starts to slope down more abruptly, so it is easy to get down to a depth of 25-30m quite quickly. The depth gauge needs to be observed closely here. It seems easy to get carried away with all the marine life and end up going quite deep. The light is beautiful down here too.

In the first few days, we had a bit of an unusual swell that stirred up particles in the top layers, which created a matte filter of blue-grayish light that added a magical romantic touch to the subsea landscape. The coastline looks towards the northeast, which means that light late in the afternoon will arrive from behind the slope. It brings out all the sculptural structures in the lava and the corals. Once back topside, I couldn’t help contemplate how a dive location obtains
its fame. This location, as such, is somewhat unassuming and doesn’t immediately stand out in comparison with so many other pretty locations on the planet or island.

No offense—the resorts here are very nice, comfortable and intimate and provide for a very enjoyable and relaxing get-away. Seemingly endless coastlines extend into the horizon. So why here, three hours away from the main tourist areas around Denpasar and Nusa Dua?

Liberty Wreck

One reason could be the Liberty wreck, one of the main dive attractions in the Tulamben area, and certainly one that holds fame beyond Bali. This 120m wreck is said to be one of the easiest to dive, and sure enough, it lies just off the beach and a very short 35m swim from the coastline. It is lying on its starboard side parallel to the beach with the keel pointing towards the coast. It lies port side and some of the twisted superstructure seems to be just below the surface. The wreck is indeed very nice because it is so accessible and covered with interesting growth. It is a good hiding place for a wide variety of sea life. As a wreck for wreck fanatics, it is probably less interesting as, for one, there are no artefacts to recover.

It is a WWII wreck indeed. It was a casualty of a Japanese torpedo. But the wreck actually first sat on the beach for more than 20 years, during which period everything worthwhile salvaging, including her propeller was removed. The Liberty, not to be confused with a Liberty class vessel, was a cargo ship carrying rubber and railroad parts from Australia to the Allied forces in the Philippines, when she was struck by a torpedo in the nearby Lombok strait on January 11, 1942. Two US destroyers took her on tow towards Singaraya hoping she could be repaired, but she was fatally wounded and took on too much water. She was then beached at Tulamben in an effort to keep her from sinking, but there was no time to salvage her cargo before the Japanese invaded Bali. She then sat here for over two decades until 1963 when Bali’s highest mountain and volcano erupted violently and created earthquake quakes that rolled the ship off the beach and broke the hull in several pieces.

It is no longer advisable to penetrate the wreck as it is starting to break up, and the steel is very fragile in places. But is still a haven to go look for creatures.

On my first dive I even caught a glimpse of the elusive pygmy sea horse. This was my first sighting of the species, and I was absolutely taken aback. I could not believe how small it was. Amazing... and truly pygmy, indeed. No wonder that they were only discovered in recent years.

We started the dive off the stern, which was decorated with majestic fan corals and other hanging or travel Bali

THE LIBERTY WRECK

Built in 1918 by the Federal Shipbuilding Company in Kearny, New Jersey, USA

Length: 120m (395 feet)

Width: 17m (55 feet)

Draft: 7.3m (24 feet)

Gross tonnage: 6,211 tons
Mount Agung is Bali’s landmark. It produced a major devastating eruption in 1963. Hard to believe on such a beautiful and peaceful day as this.

protruding corals, and within the branches we see seahorses, shrimp, crab, paper frogfish and a couple of hawkfish. Hiding in the wrecks, we see a school of grunts and trumpetfish dart around as travellers patrol the water above the wreck. The most obvious route to take first is to swim along the superstructure of the wreck as it lies at its deepest point. One thing to be said about the wreck however is the early bird gets the worm. Get up early! It is said to be the most popular dive site in Bali, so it gets many visitors on a good day in the high season. Some of these visitors are driven all the way up from the major resort areas on the southern coast, so those who reside in the Tulamben area will have a couple of hours head start. I took a pre-breakfast dive with my guide and we had the wreck virtually to ourselves. It was wonderful, and back at the resort I had a stack of yummy hot pancakes waiting.

Giant barrels
In the opposite direction, towards the eastern end of Tulamben bay, and just past that massive lava river has it’s now solidified outlet into the sea, there is another bluff under which we are going to have our next dive. This site is quite different and characterised by massive barrel sponges everywhere. It looks almost like a plantation, and a bit surreal. The diving is easy here. There is little or no current and no need to move far anyway. The devil is in the detail here, so what you want to do is inspect the coral branches very closely and every other nook and cranny for exciting and weird looking critters. Again, my trusty dive guide, Semut, proved to have a stunning eye for spotting even the smallest and most camouflaged creatures. I simply did not have film enough, and while I was taking one shot, he was over at some-

The Indonesian Throughflow

The source of the species richness in Balinese waters stems from Bali’s strategic position in the great systems of currents known as the Indonesian Throughflow. It all starts east of the Philippines where the constantly blowing of the tradewinds and the ocean currents forces huge masses of water up against the Philippines, where it is trapped and forced southwards. Most of this current, are directed by ocean bottom morphology to flow into the Sulawesi basin and down between Borneo and Sulawesi - the fat red arrow on the figure above. The only thing sitting in this giant current’s way is the lesser Sunda Islands, predominantly Bali, Lombok, Sumbawa, Flores and Timor - with Bali sitting right in the ideal position to be benefit from this flow. Approximately 25% of the total outflow into the Indian Ocean is passing through the 33km wide strait between Bali and Lombok, which is one of the main reasons that Bali is so immensely diverse. Every bit of fishlife, plankton and eggs that gets swept away pass through here.

But that is not all. Bali, unlike most of the rest of Indonesia also receives water from the Indian Ocean as well. While there is a net outflow from the Pacific into the Indian ocean, there are periodic cycles that lets in water from the Indian ocean and with it, it’s creatures, into Balinese waters. The ocean south of Bali is location for one of Indonesia’s five major seasonal upwellings, the others being at West Sumatra, Makassar strait, South Java and Banda sea. These upwellings bring cold but nutrient rich water up from the deep basins to the surface. In Bali’s case this happens during the south east monsoon, where the east-eally winds generate a strong westward current along Java, which turn pulls water of from the deep ocean basins south of Bali.

thing else waving me toward him to see what he found. I just went from spot to spot. It was, however, all very relaxed.

Once I got back inside and uploaded my dive profiles onto my laptop, I saw that my average air consumption was very low—about half of what an average dive back home would have required. I had no problems extending my dives well beyond the hour or so, until hunger or craving for coffee drove me out of the water. With all the stuff going on in the shallows, you just can’t help hanging around as long as your air supply lasts.

Tirtagangga Water Palace
A favourite day excursion from Tulamben is the Tirtagangga Water Palace. Tirtaganga, which in Balinese means “holy water of the Ganges”, was once home to royalty. The gardens and pools at the Tirtagangga Water Palace are now open to the public. Locals and tourists alike enjoy bathing in the pools fed by naturally filtered fresh water gushing from under an ancient Banyan tree perched on the mountain upon which the palace gardens reside. It is said that the waters here have healing qualities that lead to long life and health. The modest palace was built by one of Bali’s last kings, Anak Agung Anglurah Ketut, in 1947. The Raja of Karangasem was inspired to build the palace and gardens after a tour of the Versaille Palace in France. The Raja chose the location for its view that overlooked his kingdom and named the gardens after the holy river Ganges in India, which is known for its healing powers.

We took a cab up the steep curving road that led us to the water palace. Our friendly cab driver was also a knowledgable tour guide and led us...
behind the palace where fields of regional crops and rippling rice paddy terraces are cultivated by the local farmers and their families who watch over the fields and scare away ravenous birds with loud shouts from small grass huts on stilts and a multitude of homemade noise makers that spin in the wind.

We walked through the fields of sweet potato, corn, rice and a spinach-like green leafy vegetable. Small canals irrigate the fields with rushing cold fresh mountain water. Children and families can be found bathing in them and cooling themselves from the ever-present heat and humidity.

The royal villas, including the King’s own domain, can be reserved for lodging. There is also a restaurant on the premises. For more information, visit their website: www.aaabalivillas.com

The VW bus

We were setting out for another early pre-breakfast dive on a beautiful crisp morning. This time we were heading for the Tulamben drop-off and, according to Francesca, the dive manager, the fan coral was so big it was beyond belief. I must admit, I was a little bit sceptical—exaggeration is a national sport almost everywhere, but I would soon find out that she was right.

The Tulamben drop-off lies in the opposite end of Tulamben Bay so we had a 20 minute pleasant cruise before we arrived at our destination. Meanwhile, to our left, behind the beach and above the palm trees we could enjoy the sight of majestic Mount Agung in the background.

When we congregated in the shallows, we came down onto a school of blue-spotted maskrays, some of them kept hiding in the sand only with their piercing eyes sticking out. They certainly don’t have a winning appearance, but they let me creep very close to take the picture of just their eyes. We grouped and went on down the slope to explore the lava ridges, which from above, must look like a three-fingered hand jutting out from the coast with sandy areas between the fingers. On these ridges or narrow plateaus were fertile coral gardens with all sorts of corals swaying gently in the little current we encountered here. Small gorgonians were everywhere, black corals, sponges and table corals.

I traversed the “index-finger”, hum...
travel

Bali

ming a tune, minding my own business and looking around when I saw it—The Big Gorgonian. It was still some distance away, but I couldn’t believe how it dwarfed the diver nearby. It seemed like it could hide a VW minibus. I moved closer and was struck by awe. It stood out like a Vincent van Gogh painting and resembled a blossoming cherry tree.

I had mounted my very wide-angle fish-eye setup for this dive. It can almost photograph my eyebrows and heels at the same time, but I actually had to back up and then some to get this giant radar antennae fitted within my viewfinder. It was very impressive and by far the biggest fan coral I’ve ever seen. At about 30m you can’t, however, hang around forever to admire this stunning creation, so I reluctantly started nudging myself up the slope again.

At my left, I had a very interesting drop-off falling vertically 10-20m down to a sandy bottom, a place I certainly would like to explore further the next time I visit this...
magical spot.
It looked like the current here ran perpendicular to the lava-finger and was forced up over it bringing the plankton and minuscule food particles right into the fanning tentacles of the corals.
Further up, at mid-depths there was a bed of table corals where schools of cardinalfish were hiding inside the fronds.

Dining by the waves
The central meeting place for divers and guests at Scuba Seraya is the deck of the café in the centre of the resort. Here, guests can relax, socialize, plan their dives and look up fish and other creatures in guide books provided while gazing at the waves tumbling onto the beach and the small wooden fishing boats passing by far off on the horizon. There are some wonderful sunrises and sunsets to be enjoyed here.

While the new restaurant is being developed, the café serves a full menu of breakfast, lunch and dinner. On the menu, guests will find a variety of fresh and tasty dishes of local Balinese cuisine as well as some Western fare.
Favourites on the dinner menu include egg rolls with peanut sauce, a spicy Balinese grilled chicken dish called megoreng prepared in coconut cream and served with peanut sauce, rice and fresh vegetables, and nasi goreng, another spicy Balinese dish served with an egg sunny-side-up on top of a heap of stir-fried rice and vegetables. On the side, you will find a special dish of caramelized fried small finger bananas called godoh served with ice cream—excellent with Balinese coffee, which is also quite popular at breakfast time when divers can grab a quick continental breakfast before a morning dive or relax with a full Western style breakfast of bacon, eggs or omelette and toast or pancakes.

The lunch menu includes the Balinese rice dishes as well as pasta, fresh salads with tomato, olives and feta cheese, mushroom soup and sandwiches. For traditional Balinese recipes, please visit www.baliguide.com.

Blessing the Dive Centre
The local Balinese people live with their religion well integrated into their daily lives. Each day the women prepare offerings of flowers and fruits in small hand woven baskets that are placed along major pathways and intersections at the work place, outside and inside the home. It is believed that the gods and spirits of ancestors pass along these paths each day and so must be honoured with offerings and incense. So, when a new building opens like Scuba Seraya’s new dive store and deck, a priest must be called in to do a proper blessing for the future safety and prosperity of the centre and the people who work there and visit.
As guests of the resort, we were invited to attend. All day long, preparations were made in the decoration of the new building and deck with flowers, candles and palm leaves as well as an elaborate display of offerings of fruit, flowers, rice cakes and grilled whole chickens set out
as offerings during the ceremony. Soon, all the resort staff appeared donning their fancy sarongs and head-dresses that were usually saved for special occasions such as this blessing. A priest was called, who came with incense and incantations. After a lengthy meditation and several holy songs, there was a sacrifice of a small chicken upon a coconut shell and the priest blessed all the corners of the dwelling with holy water. Then, he blessed all the people who attended the ceremony with holy water and prayer. With the priest’s work done, the participants turned to celebration—singing, dancing, eating and drinking.

Partying the Balinese way apparently also means consuming copious amounts of arak (or arrack)—a locally produced aromatic liquor. I can’t say whether this version, which was passed round the circle this evening, was moonshine, but it did come in a plastic flask from some soda drink. And, wow, was it not smooth! It had the bouquet of spent jet fuel and could possibly be used to strip the paint off my old desk. Yet, as a mood elevator, it did its thing, and soon everyone was carried away in some entertaining song-dance where the dancer in the circle challenged the next with a song to take a drink and take over the dance.

Being a tourist didn’t mean that I was spared from this ritual, so I had to have a go at it too. I think I took the prize for the most humorous interpretation of traditional Balinese dancing that evening, judging from how they all cracked up and rolled over laughing. Well, after that, we all became true friends. As they say, when in Rome do as the Romans...

Night dive
Having this fabulous house reef just 20 metres from the deck where we had our dinner and Balinese coffee encouraged us to have a night dive before a late supper. In the tropics, night drops like a ton of bricks—it becomes pitch black moments after sundown, and the sky turns a deep black velvet with an unbelievable amount of stars draped across its face.

But even without sunlight shining on the dark sand of the Tulamben sea floor, the human eye is still capable of picking out the surroundings. With a healthy local stock of scorpionfishes, I wasn’t so inclined to feel my way forward, and anyway we were on the lookout for the blue-ringed octopus.
that was spotted here a little earlier in the week.

I went out with the resort’s English instructor, James, into the black night. We saw so many commensal shrimps, juvenile fish, various cup corals, crinoids, brittlestars, nudibranchs and almost omnipresent seahorses, that we were almost disgusted with ourselves. We were so blessed with such a magnificent dive. It was like a double-length movie that we didn’t want to end. There was such a plethora of species out that night. Everywhere, there was something to see, and we just kept moving.

Alas, no blue-ringed octopus. It wasn’t going to happen this night. After 1½ hours of pure joy, we two seasoned instructors finally emerged out of the water with goofy, happy expressions on our faces and spent bodies staring for supper. A heaping mound of steaming Nasi Goreng was already waiting for us on the table.

Diving Batu Kelebit
The Kelebit Rocks are said to be a good place to observe large pelagics. At this site, we find a series of three steep coral-covered ridges fanning out from the coast with channels of white, not black, sand in between. It is also a place where it is possible to go very deep if you follow the ridges all the way down. They end in a sandy slope at about 70m, a depth that should certainly not be approached on ordinary single tank scuba equipment.

A number of big sharks have been observed at depth at this site, but not as frequently as they once were. Most sightings have been made down at the 50-60m range. Sightings include great hammerheads, thresher sharks, mantas and molas (sunfish) and the rare whaleshark. Also, schools of barracudas, jacks and tuna are best spotted here. The reason for this seems to be that because of the local morphology, Batu Kelebit receives deep offshore water that
Tiny square crab among soft coral fronds. It is quite defensive of its territory but in this case it seems to be unsure of how it going to take on the intrusive camera.

Also brings in nutrients and plankton. Because of this, the temperatures here also seem to be on the cooler side, especially at depth, but then it also comes with quite a good visibility at depth. There is a bit more turbidity in mid-water where the plankton seem to congregate.

Diving Batu Kelebit
We decide to head for the depths straight away and not hang around at shallower depths for the first part of the dive. Down and down I go until I feel the tinge of narcosis and an unruly stomach round 45m where I stop my descent. I can see all the way down to the sandy bottom here.

After a week of daily +30m dives, I am on the verge of pushing the edge. My buddy descends to about 55m. I swim across the ridges while ascending gradually, keeping just ahead of a decompression obligation. On the other side of the big ridge I see them—Sharks—the first ones I have spotted after a week of intense macro photography. These were the usual white tips resting on the bottom. They lifted off the bottom and swam away once they caught a glimpse of us under-designed bubble-expelling noisy creatures with weird metallic protrusions.

The ridges themselves were covered with a very rich and diverse growth of hard corals, black corals, sponges, gorgonians and every other imaginable encrusting animal.

Northwest
Close to Bali’s northwest corner, we find Majangan Island, another of Bali’s famous dive sites and probably the first recognised dive location. It is part of the West Bali National Park and is protected by a great bay, which gives rise to an exceptional visibility and good diving even during the rainy season. The light currents that gently sweep the steep drop-offs are just right to provide the optimum living conditions for a lush abundance of gorgonians. Gorgonians are dependent on current to bring them the plankton upon which they feed, but too strong currents will break their delicate structure.

The impressive walls with overhangs of soft corals and gorgonians are a hallmark of Majangan Island. It is not the best site to see large pelagics and some of the reefs in the shallows have suffered heavily from coral bleaching due to the severe effects of El Nino in the late 1990’s.

Schooling Cardinal fish ducks in and out of the coral at the Tulamben dropoff.
At depth there is even an interesting little wreck called by many as the Anchor wreck after the anchor was found in the shallows far above the wreck itself. The wreck, which is rather broken down and mostly consists of scattered timbers and remains, does however lie in the 40-50m range just beyond the 40m recommended depth limit for recreational divers. Under all circumstances, it is in a depth range that will give you very short bottom time or send you directly into a decompression obligation. For those trained in decompression procedures, the shallower parts of the reefs provide plenty of entertainment while decompressing.

However, a word of caution is warranted—the depths around Majangan often run down between 40-60m, and one is easily tempted to push the limits here. It also said to be the site where more divers get decompression sickness than anywhere else on the island.

Secret Bay

Also in the northwest Bali, but facing the Java and the Bali Strait, we find Gilimanuk Bay also known as Secret Bay, which is, however, something of a misnomer since this is where the ferry from Java lands and is probably the best mapped of all the waters around Bali. The bay is only a couple of kilometres across, quite shallow and lined with mangroves and very little of the colourful corals that attract divers elsewhere.

So what's the attraction here? Well, the bay is the only bay along the Bali Strait that is subject to strong currents, and because of these huge exchanges of water, Gilimanuk has become a very interesting place—it acts as a natural protected fish nursery and natural aquarium for fish larvae. Here, the macro-photographer can find both rare subjects such as dragonets, shrimpfish, various odd gobies, juvenile batfish as well as excellent circumstances for photographing critters in general. Here, a lot of species can be found at shallower depths than anywhere else on the island, and the fish and invertebrates seem to be in a very good feeding condition thanks to the daily influx of nutrients into the bay.

Due to the tidal currents constantly flushing the bay, visibility can be vary a lot—so can the temperature where bay and upwelling ocean waters mix to produce some surprising cold fronts for the unsuspecting diver.
Diving in Bali for the Physically Challenged

Exploring the shipwreck at Tulamben, drift diving with Mola Mola at Nusa Penida, and experiencing the clear water and vibrant colours of the marine life at Menjangan should be available to everyone to enjoy. Bali has some of the best diving in the world. Yet, in reality, it is not so easy for some to achieve. A growing number of divers are struggling to find diving facilities which can assist them with their diving needs. This growing sector of the diving market is the population of divers who are physically challenged.

Able bodied divers may take the sights and sounds of the underwater realm for granted. However, for many of the physically challenged, these sensations can be magnified underwater. Diving for them means a unique opportunity to move freely, weightlessly, without restriction and out of a wheelchair.

In 1990, diving professional Maurice Parry founded the International Association of Handicapped Divers (IAHD). Today, there are literally thousands of IAHD instructors around the world certifying thousands of new physically challenged divers each year. Through special standards developed to allow disabled individuals to complete performance requirements and gain certification, the IAHD helps physically challenged individuals dive independently or with a trained able bodied buddy. So, there is a structure in place to give physically challenged individuals the skills to dive and enjoy the underwater world.

But the reality in most places, including Bali, is that there are few dive centers that are equipped to deal with this population of divers. So, often times, these divers are turned away or appropriate water entry and exit and in-water protocols are not properly addressed.

But there is one dive center that promotes the philosophy that scuba diving is an activity that can be enjoyed by both abled and disabled divers alike. The owners of Bali International Diving Professionals (BIDP), Avandy and Luci provide education services and support for divers who have physical challenges and their families. Avandy is an IAHD Instructor and the BIDP center continues to be the only certified member of the IAHD in Bali. They also offer training to able-bodied qualified divers who wish to become a dive buddy for divers with disabilities. It is hoped that more centers such as BIDP and dive instructors will consider extending their services and educational training to physically challenged individuals while sharing the immense natural beauty and cultural treasures both above and below the water.

For more information on IAHD, please visit: www.iahd.org

For more information on BIDP, please visit: www.bidp-balidiving.com
Bali

In the northeastern corner, which is in fact Bali’s easternmost point, we find Gili Selang located somewhat like an outpost in the current-swept Lombok strait. This is also where the black sands of the northern beaches meet the east coast. All the schooling fish in the currents create an interesting mix of biota and bottom types along the slopes of black sand, areas of big polished stones and steep valleys. Everyone seems to utter the word current in the same sentence as Gili Selang, and it is a site that the dive guides and experienced repeat visitors talk about a lot during dinner conversations.

The exposed position does give rise to some rather wild drift dives. Great fun, if you are comfortable in the water, have some experience and can master your buoyancy, so you can enjoy the various schooling fish who seem to like to congregate here, especially jacks, barracudas, trevallies and the occasional humphead parrotfish. Whitetip sharks are also common here. The coral cover seems to be predominantly leather corals with some gorgonians where the current is less severe. The north end of the area mostly resembles the Tulamben area with its black sands and gentle slopes full of life. Whereas, the southern part around the island is dominated by the current, which continues south and even down the slope. It is something that might drag the unsuspecting diver a fair bit further downwards than expected. Watch the depth and the current here. Keep to the right and go behind the island to find some shallower areas in which to end your dive.

East Coast

Amuk bay

This area holds some of the most exciting but also most challenging dive sites on the island, again due to the sometimes ferocious currents. Sharks are seen on virtually every dive. Molas are quite frequent and fish life is, in general, very rich. But the swells and swirling currents, especially around the islands of Mimpang, Gili Tepegong and Gili Bahia, can be unpredictable and should be dealt with accordingly. The upwelling of cold rich water is, however, what brings in a rewarding abundance of pelagic species.

These sites are challenging but can be very rewarding. For instance, at the aptly named Canyon on Gili Tepegong can be draped with schools of sweetlips and fusiliers against a dramatic backdrop of black boulders and steep walls. It is considered by many to be the best dive site here. Under some conditions, the Canyon appears to be filled with fish. However, the currents can be a real issue here. Under certain conditions, a strong and downward spiralling current can be produced.

Conditions need to be assessed closely before entering the water. Because of the currents and the polishing surge, the coral cover is also rather modest, but it is not what this site is about at any rate. It is about the dramatic images and structures made by naked rocks and swarms of fish.

Tanjung Sari

Skimming the literature on Balinese diving, the Tangjung Sari peninsula doesn’t seem to get very rosy reviews, and as far as first impressions, it doesn’t have much going for it either. It has a bottom of light sand with some scattered rocks and quite sparse cover of corals and hydroids. But first impressions can be deceiving, as the site has been found to be an excellent place to spot a wide range of unusual fish—especially some of the rarer sharks including wobbegongs, nursesharks and strange-looking catsharks, not to
mention the omnipresent whitetips and the occasional napoleon wrasse. It is also a good site to spot squid and octopus as well as a good variety of stonefish and pipefish. David Pickell and Wally Siagian write in their recommendable guide, Diving Bali, that they have spotted "many oddities" here and mention stargazers, walking scorpionfish and many species of rays of which some are not seen elsewhere on Bali. They also rate this site as one on the most surprising and underappreciated on the island.

The site has for many years during the day time, been a quite popular destination for snorkelling trips out of the nearby Candi Dasa. But at night, the divers can have it all to themselves, and it is an excellent site for night dives. It is shallow, protected and conveniently positioned just around the corner from Padang Bai.

Current Carrousels

Nusa Penida

Lying across the Badung strait, some 20kms from Bali’s east coast, we find Nusa Penida, Nusa Ceningan and Nusa Lembongan. The islands can be reached by dive boat in about an hour from Sanur or Padang Bai. Most dives sites here lie to the north around Lembongan and Nusa Penida and in the channel between Ceningan and Nusa Penida. All dive sites are steep slopes or walls which go down very deep. The water here is fairly cold but often remarkably clear with gorgeous corals and prolific fish life, some turtles, sharks and the seasonal oceanic sunfish—or molas for short, after their latin name *mola mola*.

Currents can be really strong around these islands because they lie right in the path of the Indonesian Throughflow (see fact file). The Lombok Strait separates the Indonesian islands Bali and Lombok and is the second most important strait through which water is exchanged between the Pacific and the Indian Ocean. The islands of Nusa Penida and Nusa Lembongan are steep, narrow ridges which rise abruptly out of the ocean. Nusa Penida is the largest and the most impressive of the three islands, and has many excellent dive sites. The water here is generally very clear and the visibility is often more than 100 feet. The currents here are very strong and can be dangerous for divers who do not have the proper experience. The island of Nusa Ceningan is much smaller and has fewer dive sites than Nusa Penida. However, the diving here is still excellent and the visibility is often very good.

LEFT; Bluespotted mask-ray hiding in the sand with only the eyes sticking out. Apparently in a quite literal sense

TOP LEFT: A manta ray performs its elegant manoeuvres in the current off Nusa Penida

RIGHT: The sunfish, or mola mola (it’s latin name, which is also widely used) is one of the great sights that attract visitors from afar. There are three species coming through Balinese waters

PETER SYMES

JESPER MEYER
Ocean and the Indian Ocean. The water is also subject to considerable thermoclines jumping from about 24° to 18°C making a good wetsuit more of a necessity than just a recommendation. This cold water comes from a 1300m deep basin north of Nusa Penida, which sits as a large barrier to the currents coming from the north and produces strong upwellings of cold water. Consequently, some of these dive sites are not recommended for beginners. It is also a good idea to have your own safety sausage and a signalling device for attracting attention at the surface.

Nusa Penida
The main points of interest diving Nusa Penida, the largest of the three islands in the group, are the large pelagics such as giant trevally, sharks, mantas, eagle rays and turtles. The majority of diving at Nusa Penida is drift-diving, and the currents can be unpredictable reaching up to five knots and coming from every possible direction including up and down.

Places on the north coast, on the other hand, offer less extreme currents and a variety of fish that seem to prefer calmer waters. Spectacular barrel sponges and gorgonians can be seen in the deeper waters, sea snakes are very often seen here and occasionally manta rays and schools of chevron barracudas pass by. Also, Gamat Bay is a small sheltered and shallow bay located between Toyapakeh and Crystal Bay and is another of the few places on Nusa Penida where you can do more than drift dive. In the shallow areas, there is a lot of interesting macro life. Malibu Point, on the east coast of Nusa Penida, is said to be the best place to see sharks and schools of large pelagics such as jacks, dog tooth tuna, rainbow runners, sharks and mantas. However, this site is also known to be tricky to dive, and if you are not careful, the current can sweep you off the point and into the strait. Manta Point is a safe bet to see manta rays, but the site can be hard to reach in the swell, which is usually quite strong, giving you a rough ride on the way there.

Lembongan Island
Lembongan island lies northwest of Ceningan island but is larger with shallow areas where there are seaweed farms and mangrove forests. It is a fairly small island with pristine unspoilt beaches. With its adjacent deep water trenches, the main attraction at Lembongan Island is the common encounters with the curious molas feeding off large plankton and jellyfish. They can also often be seen at cleaning stations with attendant cleaner wrasse.

The sunfish season on Lembongan starts in July, but the most reliable time to see them is August through September. In some years there have been sightings lasting until November, and often the molas are sighted shortly during March. The best places to spot them are Ceningan Channel and Blue Corner in Lembongan. The molas come very close to the reef to certain cleaning stations where they get cleaned by schooling bannerfish or occasional angelfishes or butterflyfishes. Some believe they come here to mate, but this thought remains a speculation.

Scorpion fish excels in camouflage technique and lie everywhere in the shallows.
Bali

Blue Corner is a steep slope with overhangs, outcroppings and a wide canyon. This dive site, while quite deep at 30-40m, is a good place to see marble rays and eagle rays. Depending on tide there is either no current or a very strong current. In strong current, you can hide behind some of the outcroppings or overhangs often to find that the rays are also hiding from the current here.

Mangrove Point is named after the mangrove forest lying between Lembongan and Ceningan. This is a nice drift dive on a slope covered with huge sponges where you may spot sharks, turtles and tunas. The Ceningan Channel is characterised by a strong current and by being quite cold, but you might see white tip reef sharks and eagle rays here. Crystal Bay is a part of the channel, which consists of a large sandy area of staghorn corals and mushroom coral blocks that hide big schools of cavalier fish.

Here, we also find the “Bat Cave.” This is a cave accessed through a sandy underwater channel where it is possible to surface inside. The cave has a small opening to the sky where all the bats that hang from the walls enter.

Ceningan Point lies at the northern tip of Ceningan island. Here, the currents are strong and unpredictable and only few operators go here. It is worth a visit, but is only for experienced divers. A steep wall is beautifully covered with orange soft corals, sponges, a special tube coral and dense schools of reef fishes.

Conclusion

How does Bali stick out from the crowd? In Tulamben, the extremely prolific macro-life of the shallows and shipwreck in combination with the molas and the current dives in the cooler waters around the strait does set the destination apart, but so does the special top side ambience of the terraced mountain terrain and Balinese culture. Tulamben is a great place for the discerning photographer and advanced diver. It is also a very romantic getaway for couples. It is not an obvious family destination, at least not for those with small kids who may be better off heading for the fine beaches found in the southern part of the island. Overall, Bali delivers in every aspect. After devastating blows from terrorism three years ago, Bali is once again a blossoming destination. ■
The island of Bali is one of Indonesia’s 17,508 islands, an archipelago located south of the equator where the Indian Ocean meets the Pacific. The tropical Indo Pacific region in which Bali is located is considered to be one of the world’s richest ecologically biodiverse systems. Bali is in essence a volcanic island with the volcano, Mount Agung, revered as a great spirit by the local people, as its highest peak rising 3,142 meters above sea level. Another peak, Mount Seraya, which lies east of Agung, rises 1174 meters above sea level. Volcanic island with high crater peaks, deep valleys, cultivated lowlands, lush terraced rice fields and thick tropical forests in the highlands.

Geography

Population 2,640,000; Religion: 87 % Hindu, 3 % Christian, 8 % Muslim

Visa

Travelers from most Western countries do not need a visa and are automatically given a 30 day stay permit upon arrival. Passports must be valid for at least 6 months upon arrival in Indonesia. Indonesian immigration is very strict. No work is permitted while visiting on a tourist visa.

Indonesian Law

is very hard on drug offenders; the death penalty is regularly applied on narcotics couriers.

Driver’s License

A valid international driving license is required. Rental car insurance is highly recommended: Drive carefully: traffic rules are not followed as well as in the west. Accidents are frequent.

Currency

Indonesian Rupiah, Exchange rate: 8,500 Rupiah per 1 US$ since early 2002. Credit cards are accepted by most higher end resorts and businesses. Payment in US$ cash and travel checks is widely accepted.

Dive Season

All year round;

Underwater visibility varies 15 to 35 meters during dry season, 10 to 20 meters during wet season

Decompression Chamber

Hyperbaric: Medical Department Sanglah General Hospital USUP Sanglah Denpasar Jl. Diponegoro

DENPASAR 80114 BALI, INDONESIA
tel 62-361-227911
fax 62-361-22426

Rumah Sakit Angkatan Laut (Navy Hospital)

Jl. Bendungan Hilir No.17

JAKARTA 12950, JAVA, INDONESIA
Tel: +62-(0)21-2524974

Web Sites

Bali Tourism Authority

www.balitourismauthority.net

Bali Guide

www.baliguide.com

Scuba Seraya

www.scubaseraya.com

Health

No major risk. Unlike islands further east in the archipelago, there is no Malaria/Dengue fever in the north-east province of Bali where Tulamben is located. There is a very small risk for these diseases in the rural areas of the islands north-west. Unless you are arriving from an infected area, Smallpox and Cholera vaccination is no longer required. Do not drink the water. Buy bottled water from the better hotels and resorts. Watch out for Bali belly, temporarily upset stomach from unfamiliar, spicy foods. Outside higher end hotels and resorts, do not depend on proper hygiene. Shower frequently. Dry thoroughly in extensive humidity. It is recommended to dry thoroughly and use medicated body powder when exposed extensively to the heat and humidity to avoid skin rashes and fungus, especially during the wet monsoon season.
In the zone...

Shark Jewels
Divers jewel - a seriously look collection. It is not company puts its money where its mouth is. But that is exactly what Reef Jewelry did when it was founded in 2001. From day one, they have had a commitment to marine conservation donating a percentage of all their sales to help the Shark Trust continue their important work. Today, Reef Jewelry produces on behalf of the Shark Trust, their logo in a choice of metals for the discerning diver. Prices range from GB£18.00 for a polished small Silver Hammerhead pendant to GB£110.00 for a small solid 9ct Gold Hammerhead pendant. www.reefjewelry.com

Low Mu
The EMC-20H Low Mu is a new Helium compatible computer that has an extremely low magnetic signature meeting the specifications for explosive ordinance disposal teams and developed for military organizations. The Low Mu version is basically the computer as the civilian model, except it uses some different components to reduce the magnetic signature which should be of great interest to Search & Rescue teams and Homeland Security teams, as well as the military. The EMC-20H Low Mu features Touch Contact Programming and a Lithium battery for improved reliability and longer battery life. www.DiveCochran.com

Underwater Whistle
Capable of being heard over a half mile away, the windstorm whistles even work underwater. Available in Jet Black, Safety Yellow and Safety Orange. Size is only 2 3/4 x 3/4 x 1 1/2 inches. Small enough to easily carry, Loud enough to attract immediate attention. From US$ 4.50 www.wind-storm-whistles.com

All in one
Rapid Diver is a new lightweight, all-inclusive scuba system that mates a tank, regulator and buoyancy module to a uniform-fit, load-bearing harness. It was created in response to public safety and military needs for a universal fit, compact, versatile and easily deployed scuba system. It is equally well suited to a range of civilian applications such as shore diving due to its user-friendly design, universal fit capability and ease of transporting and storage. Persons who are unable to wear heavy conventional scuba gear, or who simply feel uncomfortable with the associated bulk and weight, appreciate the light overall weight of just 15 pounds and wearer comfort. The Rapid Diver readies for use in less than a minute and provides sufficient air duration for the average dive of 20 to 25 minutes at moderate depths. www.rapiddiver.com

Dragon BCD
The new Dragon BCD from Mares comes with a full range of features. The MRS plus mechanical release weight release system allows for up to 6 kg to be released with one simple pull, yet the buckle simply clicks in place for optimum security. Dragon is made out of scratch resistant 3D Alutex material with woven metal. The cummerband comes with the QAS - Quick Adjust System for fast and safe adjustment of the cummerband. www.mares.com
Quattro forever
The fin that refuses to die. Now with OPB (Optimized Pivoting Blade) a system patented by Mares with the purpose of allowing the blade to assume an optimal angle through upward and downward strokes, reducing diver’s effort. Comes with the popular ABS quick-release buckles and anti-slips notches for no skidding aboard dive boats.

Golden rays
In Seawear’s marine sea life jewelry line, we found these elaborate golden eagleray earhangers. They come in three sizes. The medium sized 14kt textured spotted or eagle ray is about 1” from wing tip to wing tip as it is poised in flight. The large is about 1 1/4”. US$137.50
Weight 5.5gms

Dive Travel Essentials
Protection from pickpockets! Ultra-soft travel pouches designed to be worn under clothing keep your passport, travel documents, cash and valuables secure and accessible. 100% Spun Silk Money Belt and Neck Wallet From US$15.99

Wear Your Diving Passions!
If you’ve ever bemoaned the lack of T-shirts that express your passion for scuba diving, it’s time you check out the cool tees from Dive Junkie!

The designs found on these casual T-shirts reflect scenes and experiences close to every diver’s heart. Some designs are depicted with humour, some with a touch of seriousness, and some with a degree of nostalgia—but always with lots of heart. What you won’t find are meaningless loud T-shirts! While some designs bring the beauty and wonder of the underwater world to the surface, others strive to bring home a serious message. An example of this is Barcode Shark, which shows a shark trapped behind a barcode strips, a statement representing the commercialisation of these majestic creatures. The precision with which all Dive Junkie T-shirts have been made mirror the meticulous care all divers take with their diving gear. All T-shirts have been made with 100% fully combed cotton fabric knitted from 25-single ring-spun yarn. Weighing in at 200 gms, they have been preshrunk and possess reinforced stitching at the collars, shoulders and sleeves to enhance durability. The lycra-ribbed collars ensure that they retain their shape after numerous washes.

Cleaning up your act
Until now, boat cleaners that were effective used harsh chemicals, and environmentally friendly formulas didn’t clean well. McNett Boat Cleaner eliminates stubborn stains (even mold and tar!) from dive boats, rafts, kayaks, PFD’s and more. Essential preparation for treatment with UV Tech Protectant & Rejuvenator! UV Tech beautifies, restores and protects your boat and gear from harmful UV damage. McNett Boat Cleaner and UV Tech are great for dive charter boats! Boat Cleaner from US$13.99 UV Tech™ Surface Protectant from US$14.99

www.seawear.com

www.mares.com

www.mcnett.com

www.divejunkie.com.sg
Easy Loop Lock

Worried about leaving your tanks on the boat or in your vehicle? Easy Loop cable is made from the highest grade of multi-strand steel coated with a hard PVC to protect the tank. Simply wrap the wire around your valves and lock. The tip of the main cable is made of chrome-coated hardened steel. The loop wire is made with the same type of cable but with more flexibility allowing the wire to wrap the neck with a much lighter radius; this keeps the securing loops as close to the valve as possible making removal over the top of the valve almost impossible.

www.easylooplock.com

Get a grip

Max Holding Systems offers the newest form of scuba tank holders and speargun holders by using an effortless, temporary mounting system. Max avoids the unnecessary damages caused from permanent tank mounting systems used today. This system comes with an instant attach and release system. www.scubastorage.com

Limited Edition

Island Image’s Limited Edition Tees bring a bit of ‘vacation’ into everyday life. The World’s Best Dives Collectible Series is shown here in white. This 100% heavyweight cotton shirt is part of a collectible series that is in demand everywhere. Featuring the best dives in your area, this item is definitely flying off the shelves.

www.islandimagedesign.com

Island Image’s Limited Edition Tees bring a bit of ‘vacation’ into everyday life. The World’s Best Dives Collectible Series is shown here in white. This 100% heavyweight cotton shirt is part of a collectible series that is in demand everywhere. Featuring the best dives in your area, this item is definitely flying off the shelves.

www.islandimagedesign.com

It’s reely small

Custom Diver’s new diminutive Pocket Reel is designed to offer the diver both ratchet and free run functions allowing divers to not only hold the reel in one hand, but also lets them select the Free Running Mode, simply by depressing the spring actioned pawl with their finger, whilst still enjoying snag-free line deployment. When it comes to line, the Pocket comes with a 9kg breaking strain 2mm line in a choice of white, neon yellow or pink 50 metre line.

www.customdivers.com

Compact DX6 Advance

Aluminium Compact tech diving lightpack: rechargeable

Technical data:

- Tension (volt): 6 Volt
- Current (Amp/h): 9 Amp
- Power (Watt): 20 W
- Burn Time: 2.7 H
- Reflector Dia.: 51 mm
- Rust (Degrees): 12
- Color Temp. (Kelvin): 3200
- Weight in air: 2300 gr
- Weight in water: 1900 gr

Lamp dimensions:

- Pack dim.: ø42 x 320 mm
- Light on/off in light head
- Batteri type: NiMH
- Charging time(min): 10 H

Description:

- Lamp head made of aluminium machined in high precision, and double coated, oring sealed in front of lamp, and double sealed in back on the plug, light turn on/off just turn plug, charging of batterpack, on end of lamphead plug.
- Batteri pack, made of aluminium double coated, and all plug ends are double sealed.
- Light system are waterproove to 220 meter.
- Charger and plastic box included.

Ocean Pro is distributed worldwide exclusively by:

CDC Products Denmark
Krusenstjernvej 4, D-9400 Nørreloeb, Denmark
Phone: +45 98 174 166 Fax: +45 98 192 275
E-mail: cdc@cenmail.dk

Get a grip

Max Holding Systems offers the newest form of scuba tank holders and speargun holders by using an effortless, temporary mounting system. Max avoids the unnecessary damages caused from permanent tank mounting systems used today. This system comes with an instant attach and release system. www.scubastorage.com

Limited Edition

Island Image’s Limited Edition Tees bring a bit of ‘vacation’ into everyday life. The World’s Best Dives Collectible Series is shown here in white. This 100% heavyweight cotton shirt is part of a collectible series that is in demand everywhere. Featuring the best dives in your area, this item is definitely flying off the shelves.

www.islandimagedesign.com

Island Image’s Limited Edition Tees bring a bit of ‘vacation’ into everyday life. The World’s Best Dives Collectible Series is shown here in white. This 100% heavyweight cotton shirt is part of a collectible series that is in demand everywhere. Featuring the best dives in your area, this item is definitely flying off the shelves.

www.islandimagedesign.com

It’s reely small

Custom Diver’s new diminutive Pocket Reel is designed to offer the diver both ratchet and free run functions allowing divers to not only hold the reel in one hand, but also lets them select the Free Running Mode, simply by depressing the spring actioned pawl with their finger, whilst still enjoying snag-free line deployment. When it comes to line, the Pocket comes with a 9kg breaking strain 2mm line in a choice of white, neon yellow or pink 50 metre line.

www.customdivers.com

Compact DX6 Advance

Aluminium Compact tech diving lightpack: rechargeable

Technical data:

- Tension (volt): 6 Volt
- Current (Amp/h): 9 Amp
- Power (Watt): 20 W
- Burn Time: 2.7 H
- Reflector Dia.: 51 mm
- Rust (Degrees): 12
- Color Temp. (Kelvin): 3200
- Weight in air: 2300 gr
- Weight in water: 1900 gr

Lamp dimensions:

- Pack dim.: ø42 x 320 mm
- Light on/off in light head
- Batteri type: NiMH
- Charging time(min): 10 H

Description:

- Lamp head made of aluminium machined in high precision, and double coated, oring sealed in front of lamp, and double sealed in back on the plug, light turn on/off just turn plug, charging of batterpack, on end of lamphead plug.
- Batteri pack, made of aluminium double coated, and all plug ends are double sealed.
- Light system are waterproove to 220 meter.
- Charger and plastic box included.

Ocean Pro is distributed worldwide exclusively by:

CDC Products Denmark
Krusenstjernvej 4, D-9400 Nørreloeb, Denmark
Phone: +45 98 174 166 Fax: +45 98 192 275
E-mail: cdc@cenmail.dk

Get a grip

Max Holding Systems offers the newest form of scuba tank holders and speargun holders by using an effortless, temporary mounting system. Max avoids the unnecessary damages caused from permanent tank mounting systems used today. This system comes with an instant attach and release system. www.scubastorage.com

Limited Edition

Island Image’s Limited Edition Tees bring a bit of ‘vacation’ into everyday life. The World’s Best Dives Collectible Series is shown here in white. This 100% heavyweight cotton shirt is part of a collectible series that is in demand everywhere. Featuring the best dives in your area, this item is definitely flying off the shelves.

www.islandimagedesign.com

Island Image’s Limited Edition Tees bring a bit of ‘vacation’ into everyday life. The World’s Best Dives Collectible Series is shown here in white. This 100% heavyweight cotton shirt is part of a collectible series that is in demand everywhere. Featuring the best dives in your area, this item is definitely flying off the shelves.

www.islandimagedesign.com

It’s reely small

Custom Diver’s new diminutive Pocket Reel is designed to offer the diver both ratchet and free run functions allowing divers to not only hold the reel in one hand, but also lets them select the Free Running Mode, simply by depressing the spring actioned pawl with their finger, whilst still enjoying snag-free line deployment. When it comes to line, the Pocket comes with a 9kg breaking strain 2mm line in a choice of white, neon yellow or pink 50 metre line.

www.customdivers.com

Compact DX6 Advance

Aluminium Compact tech diving lightpack: rechargeable

Technical data:

- Tension (volt): 6 Volt
- Current (Amp/h): 9 Amp
- Power (Watt): 20 W
- Burn Time: 2.7 H
- Reflector Dia.: 51 mm
- Rust (Degrees): 12
- Color Temp. (Kelvin): 3200
- Weight in air: 2300 gr
- Weight in water: 1900 gr

Lamp dimensions:

- Pack dim.: ø42 x 320 mm
- Light on/off in light head
- Batteri type: NiMH
- Charging time(min): 10 H

Description:

- Lamp head made of aluminium machined in high precision, and double coated, oring sealed in front of lamp, and double sealed in back on the plug, light turn on/off just turn plug, charging of batterpack, on end of lamphead plug.
- Batteri pack, made of aluminium double coated, and all plug ends are double sealed.
- Light system are waterproove to 220 meter.
- Charger and plastic box included.

Ocean Pro is distributed worldwide exclusively by:

CDC Products Denmark
Krusenstjernvej 4, D-9400 Nørreloeb, Denmark
Phone: +45 98 174 166 Fax: +45 98 192 275
E-mail: cdc@cenmail.dk
How did you get into diving?
I have always been a water baby – born an Aquarius, I was always jumping into water from an early age. I guess I was destined to be a diver; it was just a matter of time...

I was never really exposed to scuba diving as a child as we lived about as far away from the sea as you can get. I started to learn to dive in Bristol, after leaving University. I joined the University of Bristol Underwater Club, as it seemed a cheap and rather sociable way of learning to dive.

How right I was on both counts! I paid a small joining fee to cover weekly pool training, and after just a couple of weeks sitting at the bottom of the university pool on Friday evenings practicing a good bit of mouth to mouth resuscitation, I had a diving boyfriend! A good start and a great incentive to keep learning! As the club was a BSAC club, rather than a PADI one, the basic training was quite long and thorough – something which I really appreciate looking back at it. I had an excellent trainer who shouted a lot...
but certainly couldn’t have prepared me better for my first few dives. I never felt like so many people do, who dive for the first time abroad, that I had been thrown in the water with only the briefest of lessons. I spent the best part of two terms having weekly training and only in the summer break did I get my first “open water” experience. I certainly felt more anticipation than nerves when going for my first dive.

I have managed to dig out my first diving log book which states that my very first dive—over 10 years ago now, was near Skomer in West Wales, was to a pathetic 6.2 metres and I stayed down only 12 minutes and saw nothing more than some kelp and a lone spider crab. But I remember that dive so well. I remember the excitement of getting into the cold water in my new (and rather purple) semi dry suit—a bit of a change from a swimsuit in the university pool! I remember the joy of being underwater—being able to breathe without surfacing and witnessing a whole new world of fascinating sea life which I had only ever seen a glance of while rock pooling or snorkelling. Never did I realise that this experience would lead me onto my future job of presenting underwater.

And what was your first diving and presenting underwater job?
This was actually my very first presenting job as well. I was offered a series of 13 shows for Fox Television in the US, called World Gone Wild. This was covering animal=people stories around the work with a number of different presenters. Because I was a diver, 6 of the 13 stories I was to present were going to be based underwater. This was my first time using an Aga mask and the first shoot was filming reef sharks (See later!). All in all, I had great fun but it was a bit like being thrown in at the deep end!!

How difficult is it to present underwater?
When presenting underwater, you have to wear an Aga mask—either a full face mask or a half mask, which has a nose dam. Apart from the difficulties of the mask and all the cables that tether you to the boat, there are many other things that limit you. You have to plan shorter dives due to the Aga masks using up a lot of air and my talking using up even more air! My depth is also limited by the length of the umbilicals especially if we’re not anchored up directly over the site hence the attraction...
Do you like using an Aga mask?
Ah, the beloved Aga masks. These I also loathe because of the problems they bring. It’s fantastic to be able to speak underwater and to communicate with topside, but after you talk, you need to breathe and this makes a noise so you can’t hear what others are saying. So, there’s a timing problem—you have to speak, wait, listen, breathe, wait, listen, speak and so on. If things aren’t going so well—substitute “shout” for “speak” and add a few expletives! Aga masks bleed air unless the seal is really tight around your face and they only come in one size, so having a beard makes things very difficult—not a problem for me, but definitely one for some of our contributors!

What’s the best wreck you’ve dived?
This has to be the Stirling Castle—a stunningly preserved wreck from 1703. It was sunk in the worst storm to hit Britain in recorded history. A third-rate man-of-war with over 70 cannon, she hit the Goodwin Sands off the coast of Ramsgate—swiftly becoming covered by the shifting sands and disappearing for 3 centuries. She emerged in 1979, almost pristine and I had the pleasure of diving her in 2002 with registered guardian, Bob Peacock. My dive log states that we saw intact gun ports, cannon, intact onion bottles, a bronze cauldron, 18ft anchor deck timbers, human bone, rudder…

It’s a tough wreck to dive with only a small tidal window and visibility ranging from near zero to excellent. If you’re lucky enough to get good vis—it’s an incredible wreck.

And the most challenging?
Ever since the second series of Wreck Detectives was being researched by RDF (the independent company making the series for Channel Four), I had been told about this incredible wreck just off Padstow—a German U-Boat. A great wreck to dive, as it’s so intact, great viz, only recently discovered and not yet even identified. Just one problem—it’s at 60m. So, the question was asked: Was I up for it? I didn’t mind doing another training course in order to see another wreck. I would also end up joining that elite group of divers—the men in black suit—also known as the techies! Nine days of classroom sessions and endless out of air drills and equipment checks later, I was an advanced Nitrox and IANTD Normoxic Trimix diver.

The training was well worth it—to dive on a practically virgin wreck in stunning visibility. Diving...
in the UK really doesn’t get any better than this!

What’s been your best diving experience? Diving with any marine mammal is a wonderful experience. I’ve dived with dolphins, sharks, seals, and whales… but maybe the most magical of all for me was diving with manatees.

Sadly, this wasn’t in the wild, as they are pretty rare and the waters they inhabit are often too murky to film in, but while filming for a wildlife TV series in Brazil, I was lucky enough to visit a manatee rescue centre where they are rehabilitated and kept in large tanks. When we arrived, it was explained that enough to visit a manatee rescue—we were surrounded by these huge fish coming at me from every direction—maybe it was a time when one is grateful for the lack of peripheral vision in a mask under water!

“One’s on your head, Miranda!” shouted Stuart. I never saw it; instead, I felt another one on my arm—biting it! Thank goodness we were wearing chain mail (only on our arms, thought!) I felt a huge pressure, but no pain, and all I had to show for it was a small hole in my suit. The filming went well—I was trying hard to look cool, calm, and collected and it seemed to work… After what seemed like an eternity on the dive—we ascended—this was when things started to go wrong. No one had been monitoring the dive. I guess, understandably, we were too caught up with the sharks and what they were going to eat next!

I started my ascent, to the sound of my computer bleeping a warning for 10 minutes of decompression. I checked my air—practically empty. With an Aga mask on, it’s not easy to just rip it off and to swap tanks. Nothing to do but surface to the RIB, grab a mask, another cylinder, descend, to turn around and drop her off and continue, undirected, to shoot the sequence. I was a fairly inexperienced diver at that stage and this was my first time in the water wearing an Aga mask. I was a bit apprehensive about diving with sharks, but after a brief interview with the leader of the project and some “chumming” of the water to attract the sharks of our show, we dived in. Our aim was to create and film a feeding frenzy, but also to indicate that the sharks weren’t really interested in eating us—just the fish!

Within minutes, we were surrounded by manatees. It was a magical experience. I’ve dived in the Bahamas and although for anyone who’s dived with reef sharks, it’s not that scary, things didn’t go according to plan from the start. The director was seasick just minutes from land, so we had to turn around and drop her off and continue, undirected, to shoot the sequence. I was a fairly inexperienced diver at that stage and this was my first time in the water wearing an Aga mask. I was a bit apprehensive about diving with sharks, but after a brief interview with the leader of the project and some “chumming” of the water to attract the sharks of our show, we dived in. Our aim was to create and film a feeding frenzy, but also to indicate that the sharks weren’t really interested in eating us—just the fish!

Within minutes, we were surrounded by manatees. It was a magical experience. I’ve dived in the Bahamas and although for anyone who’s dived with reef sharks, it’s not that scary, things didn’t go according to plan from the start. The director was seasick just minutes from land, so we had...
and then carry on my deco. (I DO NOT RECOMMEND THIS!!!)

So, that’s what I did. Back down at my deco stop, I checked the air in my new tank. Nearly empty! They must have given me a used tank. B******ds!

So, up again for a third tank. More expletives! With a full tank, I finished my deco and surface, unharmed, and with no signs of decompression sickness. The dive was certainly not life threatening but for me it was an early warning to an inexperienced diver not to rely on others but to take charge yourself—especially with sharks around.

What plans have you got for future TV projects?
I am just in the process of filming a landmark BBC series called COAST, which airs in the UK from July 22nd. It features a diverse number of stories around the British coastline and I am following the natural history pieces. We have only had the chance to dive in a few locations, but when we have, it’s been excellent. We filmed the charming and very inquisitive gray seals in the Farnes Islands and also dived with mating cuttlefish off the South Coast at Selsey, near Bognor Regis. I have never been able to touch a cuttlefish before—they certainly had something else on their minds other than me!

What do you love so much about diving?
It’s something you can’t really explain to someone who doesn’t dive.... utter weightlessness, therapy, relaxation, the sound of your own breathing, the gentle crackling of life underwater and just... utter calm.
It would seem to be self-evident to use the adjective ‘salty’ in connection with the World’s oceans. Everybody knows that the oceans are salty. It is perhaps the first thing that comes to mind when we think of the oceans.

Everyone who has taken in a mouthful of ocean water while swimming knows that the ocean is really salty. About 70% of the Earth is covered with water, and we find 97% of that water in the oceans. However, it is not generally known just how important the salinity of the oceans is for life on this planet. Not only has it importance for the heat transmission, for example, from the seas to the land and vice versa, and thus affecting global climate, but it is of the greatest importance on the types of life that have evolved in these waters. Because of this salinity special strategies have had to be evolved not only by the animals that live there but also by the plant life. But how saline are the oceans?

Salinity of the oceans
The salinity of the oceans depends on the solvent ability of water. It is the most universal solvent known, being able to dissolve both acids and bases. All water has some dissolved material in it. The difference between fresh water and ocean water is that ocean water contains many more dissolved salts. Ocean water is about 3.5% salt. And more than 90 percent of that salt would be sodium chloride, or ordinary table salt.

Composition of dissolved salts
At least 72 chemical elements have been identified in sea water, most in extremely small amounts. Probably all the Earth’s naturally occurring elements exist in the sea. Elements may combine in various ways and form insoluble precipitates that sink to the ocean floor. The tabulated 7 ionic species make up 99.7% of the oceans’ salinity.

<table>
<thead>
<tr>
<th>Anion</th>
<th>Concentration %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl^-</td>
<td>1.91</td>
</tr>
<tr>
<td>SO_4^-</td>
<td>0.27</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>0.01</td>
</tr>
</tbody>
</table>

From the top of the ocean all the way to the depths of the ocean, salinity is between 3.3 to 3.7% with the average salinity being about 3.5%. The salinity for almost the entire ocean at sea surface is around 3.3 – 3.6% with some geographic variations of salinity due to precipitation and evaporation. The salinity of ocean water varies. It is affected by such factors as melting of ice, inflow of river water, evaporation, rain, snowfall, wind, wave motion, and ocean currents that cause horizontal and vertical mixing of the saltwater. Evaporation leaves behind dissolved salts increasing salinity and precipitation freshens the top ocean layers. So, salinity is high in mid-latitudes where evaporation is high and precipitation is low. Salinity is low near the equator because precipitation is so high. Very high latitudes can also see decreases in salinity where sea ice melts and freshens the water.

The saltiest water, at 4.0%, occurs in...
Life in and around the oceans

The saline environment has quite an effect on life in the oceans. Most creatures that live in the ocean could not live in fresh water. However, when the highly saline waters of the ocean meet fresh water, an estuary is formed. This is a special environment where some creatures have learned to adapt to a mixture of fresh and salt water. When fresh water, ground water and soils are altered by human actions and salinity greatly increases, it can have an extreme detrimental effect on life there. Changes in salinity brought about by human residential, commercial and industrial activity can kill plant life, aquatic life, and animal life in a given area. Humans have the responsibility to make sure their actions are not causing this type of devastation.

Mangrove trees

One important example of plant life that has adapted to salty conditions is the mangrove tree. Mangroves are a unique part of the coastal ecosystem, being found along tropical seacoasts on both sides of the equator. They are thought to have originated in the Far East. There are several types of mangrove with the Galapagos being home to four of them. They are interesting because they have evolved mechanisms enabling them to cope with high salt conditions.

The Black Mangrove, for example, has the highest salt tolerant leaves of all the mangroves, with its leaves being equipped with special salt-extracting glands. Much research has been done in attempting to elucidate how this salt extraction functions but many fundamental questions remain. The gland ultrastructure has been described but questions remain regarding processes inside the cells as well as ion transport from the secretory cells to the cuticle.

Incidently, apart from their ability to survive saline conditions they are also interesting in being unique in having true plant viviparity. Mangrove species reproduce by producing flowers and rely on pollination by bees and insects. After pollination, the seed remains on the parent tree where it germinates and grows roots before dislodging.

Marine animal life

Due to the salt content, life in the oceans is quite different from that found in freshwater. However, sea water and river water differ in more ways than in just their salt content. For example, rivers carry to the sea more calcium than chloride, but the oceans nevertheless contain about 46 times more chloride than calcium. Also, silica is a significant constituent of river water but not of sea water. Furthermore, calcium and bicarbonate account for nearly 50% of the dissolved solids in river water yet constitute less than 2 percent of the dissolved solids in ocean water. These variations seem contrary to what one would expect.

Life’s affecting salt composition

Part of the explanation is the role played by marine life, both animals and plants, in ocean water’s composition. Sea water is not simply a solution of salts and dissolved gases unaffected by living organisms in the sea. Mollusks, for example oysters, clams, and mussels, extract calcium from the sea to build their shells and skeletons.

the Red Sea and the Persian Gulf, where rates of evaporation are very high. Low salinities occur in polar seas where the salt water is diluted by melting ice and continued precipitation. Partly landlocked seas or coastal inlets that receive substantial run-off from precipitation falling on the land also may have low salinities. The Baltic Sea ranges in salinity from about 0.5 to 1.5%. The salinity of the Black Sea is less than 2.0%.
Foraminifers, very small one-celled sea animals, and crustaceans, such as crabs, shrimp, lobsters, and barnacles, likewise take out large amounts of calcium salts to build their bodies. Coral reefs, common in warm tropical seas, consist mostly of calcium carbonate as limestone, formed over millions of years from the skeletons of billions of small corals and other sea animals. Plankton, tiny floating animal and plant life, also exerts control on the composition of sea water. Diatoms, members of the plankton community, require silica to form their shells and they draw heavily on the ocean’s silica for this purpose.

Some marine organisms concentrate or secrete chemical elements that are present in such minute amounts in sea water as to be almost undetectable: Lobsters concentrate copper and cobalt; snails secrete lead; the sea cucumber extracts vanadium; and sponges and certain seaweeds remove iodine from the sea.

Thus, sea life has a strong influence on the composition of sea water. However, some elements in sea water are not affected to any apparent extent by plant or animal life. For example, no known biological process removes the element sodium from the sea.

Global Conveyor Belt
Together, salinity and temperature determine seawater density and buoyancy, driving the extent of ocean stratification, mixing, and water mass formation. Greater salinity, like lower temperatures, results in an increase in ocean density with a corresponding depression of the sea surface height. In warmer, fresher waters, the density is lower resulting in an elevation of the sea surface. These height differences are related to the circulation of the ocean. The changes in density bring warm water poleward on the surface to replace the sinking water driving the global thermohaline (heat and salt) circulation within the ocean called the Global Conveyor Belt. This is the principal mechanism by which the oceans store and transport heat. The ocean stores more heat in the uppermost 3 meters than that of the entire atmosphere and acts as a global heat engine. Salinity is thus a key ingredient in the global thermohaline circulation. We will be discussing the importance for the environment of the Global Conveyor Belt in a coming number.

Thus, sea life has a strong influence on the composition of sea water.
Drink saltwater to save your life - perhaps

In Coleridge’s famous poem, in which a becalmed crew is dying of thirst in the middle of the ocean, the narrator says:

“Water, water, everywhere, And all the boards did shrink. Water, water everywhere, Nor any drop to drink”

It is certainly ironic that in the middle of all that water they had nothing to drink, for it is well known that if you drink seawater you will die. But, well known or not, can this really be true, or is it just a myth?

Doctor Alain Bombard, who died in France in July this year, claimed to have proved that you can drink seawater and survive. He, in fact, carried out a trial in 1952 in which he survived 53 days on the ocean in a life raft without any fresh water or food. His theory was that the human system can absorb sea water provided it’s drunk in small quantities and taken continuously. Plankton is rich in vitamin C and, filtered from the sea with a special net, it contains all the nutrients required. Bombard drank rainwater and up to a pint-and-a-half of sea water a day on his trip.

He was inspired by Thor Heyerdahl’s 1947 Kon Tiki expedition, who crossed the oceans on a raft, living on a diet of fish. This event influenced his life so much that he decided to prove the possibility of survival in a blow-up raft with the very limited amount of resources. Bombard drank only small quantities of salt-water and consumed the plankton which it contained.

His most famous book about his Atlantic raft crossing is titled “The Bombard Story.”

In Theory

After theoretical studies at the hospital of Boulogne sur mer, to determine what quantity of fresh water you can get from a fish, from the rain, how much salt water you can drink, etc., he decided to test his theory on a Zodiac inflatable boat and in 1952 to cross the Atlantic Ocean from the Canary Island to the West Indies. He went without any water, just a few basic tools like a net to catch plankton, harpoons to fish, a few books, medical material to study his health, and a sextant. Emergency provisions were loaded onto the 15-foot-long, 6-foot-wide rubber boat, but a notary sealed them so it would be obvious if Bombard used them. The seal was reported to be still affixed at journey’s end. Bombard left the Canary islands on October 19, and reached the West Indies December 23. He encountered storms, and weeks of dead-calm seas. When he encountered a tanker, he found that he was 600 miles off course. The mix of raw fish and plankton, which he first thought tasted a bit like lobster purée, grew tiresome. He told Life magazine that it added up to “a starving, thirsty hell.”

64 days

After 53 days of travel, he encountered a ship. The crew offered him a meal and proposed to bring him to some islands but Bombard decided to continue alone and he reached Barbados on December 23, 1952. When reaching Barbados he was in such poor condition that he was immediately hospitalized. The total trip was 4400km and took 64 days.

Bombard went to an oceanographic institute in Monte Carlo to develop techniques and standard safety procedures on board ships have all been greatly improved. He also received many letters from sailors who managed to survive life and death situations using his tips.

Is it really possible?

So, can you survive by drinking seawater? It would appear that you can if you use it as a supplement to other sources such as the juice from pressed fish. However, it might be advisable first to read “Alone at Sea” by Hannes Lindermann. He tried Bombard’s tricks on two short voyages drinking saltwater - and almost died. His feet and legs swelled dangerously. In “Alone at Sea”, 1958, he not only cast doubt on seawater’s potability, but also charged that Bombard had cheated by sneaking provisions aboard. Find both books at Amazon.com, and judge for yourselves.

It all depends, it seems. The 33% salt concentration in the water of the Dead Sea would however certainly kill you fast if you drank it.
Ecofieldtrips Pte Ltd is a Singapore based company which employs specialist biologists to cover the biology of rainforests, mangroves, seashores and coral reefs in the unspoilt ecosystems of Tioman Island, Sarawak and Langkawi, in Malaysia. School groups from Singapore, Malaysia, Hong Kong, Bangladesh, UK and Ireland come annually on the fieldtrips. Fieldtrips vary in length and content- from fun filled educational trips with 11/12 year olds to in-depth GCSE, A-Level and IB survey work- depending on school requirements. The “hands on” field experience and the knowledge and experience of EFT biologists ensures a better understanding of our wonderful ecosystems and how they are interrelated. The fieldtrips support what is being taught in the classroom and it is hoped that fieldtrip experience leads to life long conservation awareness.

“What would the world be, once bereft
Of wet and of wilderness? Let them be left,
O let them be left, wilderness and wet;
Long live the weeds and the wilderness yet”

Gerard Manley Hopkins

Text by Bridget Hedderman
Photos courtesy of Eco Field Trips

Mangrove breathing roots. Sonneratia sp

Mangrove quadrat survey
Introduction to the Mangrove forest:

Mangroves seem to have little appeal to the general public and are commonly referred to as “hot, bug infested, smelly swamps that are polluted and mess up the coastline.” They are frequently cleared to allow for better sea views or reclaimed to provide more flat land for buildings and aquaculture. The terrible tsunami tragedy of Dec 2004 brought to light the vital function of mangroves in protecting coastal areas during times of adverse weather conditions. During fieldtrips in Sarawak students see exactly how mangrove forests are being cleared to make way for housing development. They also visit a wonderful kampong that nestles amongst the mangrove trees and observe how people can live in harmony with nature.

Mangroves have many other important roles, they are the nursery ground for juvenile fish and crustaceans, they provide food, medicines and a sustainable source of good quality timber for the local people. Mangroves are the home to many creatures such as fruit bats, snakes, and

4 DAY ITINERARY
ENVIRONMENTAL SYSTEMS FIELDTRIP
PULAU TIOMAN, MALAYSIA

* Day 1 - Coach and ferry to Tioman. Programme briefing, Nature Loop - Short walk into the rainforest behind the resort, follows the stream through a stretch of the forest into the mangrove and out onto the beach at Paya Beach. This overview of river/ rainforest/mangrove/coral reef - gives a perfect introduction and holistic approach to field work. Evening educational presentation.

* Day 2 - Snorkelling on pristine coral reef on nearby island. Explore diversity of the mangrove. Visit the marine Park Visitor’s Centre, Snorkel and feed the fish. Evening educational presentation

* Day 3 - 7km Rainforest trek - examine coastline, river, village development and the impacts to tourism. Survey work: Soil development, Hydrological cycle, Climate, Microclimates and Forest maturity, Wildlife discovery and interaction. Evening educational presentation.

* Day 4 - Seashore survey using line transects and quadrats - Data analysis & student presentation. Coastal walk to Turtle Sanctuary. Depart back to Singapore.

www.ecofieldtrips.com.sg

CLOCKWISE FROM TOP LEFT: Mangrove at high tide; Horseshoe crab; Mangrove survey
Mangroves

Mangroves are a specialised group of plants that have adapted to living in the fringe of land between the sea and the land, along coasts and riverbanks where fresh and salt water meets. Here few other plants can survive the harsh environmental conditions. Mangrove plants have adapted to accommodate daily flooding by seawater when the tide is high and exposure to the hot rays of the tropical sun when tide flows out. Mangroves frequently have to survive freshwater flooding when streams overflow during the rainy season.

Mangrove soil is waterlogged and anaerobic with sulphur producing bacteria giving off the distinctive odour of rotting eggs! The strange roots of mangrove trees often protrude upwards allowing air to diffuse into the plant tissue through specialising pores when exposed to air. This ingenious adaptation works in much the same way as a snorkel when skin diving.

Mangroves are without doubt what students know least about when they arrive to take part in a fieldtrip and EFT biologists introduce mangroves to students in a variety of ways. The first introduction to mangroves is from the rainforest by following a stream which then meanders through a wonderful estuarine mangrove before it reaches the seashore. It is often the case that students find themselves waist deep in water wading through the mangrove. It is this journey from the rainforest to the seashore through the mangrove that makes students realise how ecosystems are interconnected.

Students also approach mangroves from the sea by snorkelling into mangroves at high tide. This gives a very different perception of...
mangroves and students can well imagine how mangrove roots are a refuge for smaller fish and how they provide such a good barrier against coastal erosion.

Students also spend time doing more detailed surveys in mangroves. This may involve small groups working together to learn as much as possible about a given area of a mangrove forest. A variety of survey techniques are used including a silent survey to observe the timid animals that emerge when they are not disturbed. Mangrove zonation, using quadrates and transect lines are carried out as well as water and soil sampling. The affect of pollution and particularly human impact is brought home to students during their surveys.

It is hoped that during the field trips the importance of conservation becomes clear and young people leave with a thorough knowledge about these amazing ecosystems and a greater appreciation of their commercial and intrinsic value. From our student feedback over the years, these fieldtrips have influenced their attitudes to the environment, conservation and sustainable development in a very positive way. ■

For more information, visit: www.ecofieldtrips.com.sg
When divers run out of gas in open water it can only be down to two possible explanations. Either they haven’t been monitoring their pressure gauges and plainly run dry. Or they have suffered some equipment malfunction such as a regulator free flow or a split hose which are technical breakdowns that can happen even to the most conscientious, experienced and well trained diver.

But how do we prepare for these eventualities? Do we just rely on our buddy to sort us out? And is that a wise policy?

Training agencies differ in the degree of self sufficiency training at recreational levels. Most of them instruct divers to, when in a situation where they run low or out of gas, to swim to their “buddy” and share gas from an alternate second stage, or octopus as it is widely known. This obviously requires that the buddy is within swimming distance, which is why we are also taught to keep fairly close together in buddy pairs should anything of this sort happen, however unlikely it may seem.

According to conventions, the alternate second stage, or octopus, should be clearly stowed in the imaginary triangular area between the chin and the lower corners of the rib cage from where it can easily be seen and grabbed in case it is needed. If, however, the diver low on air is too far away from his buddy, the next option would be to swim directly to the surface while exhaling or perhaps breathing from a free flowing regulator. In either case a difficult task. So much for the theory.

In reality, however, in the real world of diving things may be a lot different. One of the most commonly seen deviations from recommended practice are divers stowing their alternate air source octopus in a BCD pocket or have it dangling freely somewhere behind them. Sad but true. Secondly, buddy pairs, once they are beyond their basic training course rarely do a proper buddy check before entering the water ensuring that they know the whereabouts of the very alternate air source that they may urgently need later. And thirdly, they are rarely looking at each other when one runs out of gas. The victim of an out of gas situation will already be under significant stress and only more so if he also has to swim some distance to reach his buddy. If he then, on top of everything else, also has problems locating a not so clearly seen alternate second stage, the situation will very soon, needless to say, become very serious if not already.

In my experience, however, the in reality of training agencies differ in the degree of self sufficiency training at recreational levels. Most of them instruct divers to, when in a situation where they run low or out of gas, to swim to their “buddy” and share gas from an alternate second stage, or octopus as it is widely known. This obviously requires that the buddy is within swimming distance, which is why we are also taught to keep fairly close together in buddy pairs should anything of this sort happen, however unlikely it may seem.

According to conventions, the alternate second stage, or octopus, should be clearly stowed in the imaginary triangular area between the chin and the lower corners of the rib cage from where it can easily be seen and grabbed in case it is needed. If, however, the diver low on air is too far away from his buddy, the next option would be to swim directly to the surface while exhaling or perhaps breathing from a free flowing regulator. In either case a difficult task. So much for the theory.

In reality, however, in the real world of diving things may be a lot different. One of the most commonly seen deviations from recommended practice are divers stowing their alternate air source octopus in a BCD pocket or have it dangling freely somewhere behind them. Sad but true. Secondly, buddy pairs, once they are beyond their basic training course rarely do a proper buddy check before entering the water ensuring that they know the whereabouts of the very alternate air source that they may urgently need later. And thirdly, they are rarely looking at each other when one runs out of gas. The victim of an out of gas situation will already be under significant stress and only more so if he also has to swim some distance to reach his buddy. If he then, on top of everything else, also has problems locating a not so clearly seen alternate second stage, the situation will very soon, needless to say, become very serious if not already.

CESA
Another option may be performing a controlled emergency swimming ascent (CESA). This is, however, a skill we practice only once during basic training—unless we become instructors ourselves. As with any other skill upon which your safety is dependent, it should however be practised at regular intervals. But is it ever?

Buddy breathing could be another option, but it is a drill which training agencies have considered optional in training for many years now. It is certainly a good exercise and eye-opening experience to practise under controlled circumstances. But as the training agencies also came to realise over time, it is also a drill so fiendishly difficult and stressful to perform under a real emergency situation that only quite experienced divers with good stress management can handle it.

“Check your pressure gauge at least once every minute, during every dive”
Solo or Not?

Besides, if a skill is optional, most instructors will not practice it with students and few divers, whatever, will keep on practicing the skill after training a buddy check. Usually mentioned in an open water course is the possible advantages of a pony bottle or a small spare air cylinder, but a mention is usually all it gets.

Buddy check

The buddy check gets more than a mention, and is in fact mentioned and practiced every day during basic training. Buddy checks should be a standard procedure for novice divers only. Experienced divers at all levels should not need a buddy check. Why? Basically because you must always be the one responsible for your own life support systems. It should never be up to another diver/buddy to check your life support system (scuba unit) is functioning how it should be. It’s your life on the line. All divers diving together should however be aware of their partner’s specific equipment configuration, especially where their alternate air sources are, which type of releases are on the BCD/harness and what type of weight system, integrated or weight belt, they use.

In my humble opinion, for the vast majority of divers the buddy system as we know it, is seriously flawed!

What if...?

Here is a little reality check: If a diver runs out of gas and swims some distance to reach and share gas with their buddy and the buddy is unaware of the problem, what is most likely going to happen is that the diver who is out of gas is going to grab the first second stage they see and know is working, which is the one the buddy is already breathing from. With this in mind, a better method of training and diving would be for divers to normally breathe from the longer of the two hoses (the one we would usually consider to be the alternate second stage, or octopus) and stow the other second stage (on the shorter of the two hoses) under the chin with a bungee cord around the neck.

What would then happen in the aforementioned scenario is that the diver who is out of gas would take the second stage from his buddy’s mouth. The buddy would then replace this second stage with the alternate second stage, which is easily located just inches away right under the chin. The out of gas diver would then also be breathing from the longer of the two hoses, making gas sharing much more comfortable. But you are still dependent on your buddy. A different and better approach to prevent out of air situations is to have another air source on board yourself. Depending on your style of diving, it need not be a twin tank with manifold. A pony bottle or spare air cylinder would still be a great help for many recreational divers.

A little spare air tank doesn’t hold much but a couple of extra available breaths may make for just the essential difference. Also ask your buddy to carry some extra air supply of his own.

Heard it before?

Does all this start to sound familiar? Well it should, if you have been reading my series. We are revisiting the “redundancy ethic”, I wrote about a couple of issues back. In the world of technical training, this approach to diving is the standard procedure and has been for many years. Put simply, according to the “redundancy ethic”, anything that could possibly malfunction with a risk to your life as the result, should be duplicated with an independent back up system. While you may share together with someone, pretend that you will be diving alone and prepare and kit up accordingly, and dive within your limits.

We don’t call it “Solo” diver training however. A more accurate term would be “following the laws of common sense”. The technical diver is taught during formal training that the possibility of being split from the dive group, or buddy always has to be taken into consideration. A diver may even have to complete a lengthy decompression obligation alone after being split from the rest of the dive team, so back up sys...
tems, must be taken on the dive in order to resolve equipment related problems should they occur.

Common sense
No longer does the questionable buddy system apply. What does apply is a common sense, logical outlook on required equipment and appropriate configuration for the type of dive along with “planning the dive and diving the plan”. The technical diver does not have the option of a direct ascent to the surface after an equipment malfunction without getting seriously bent or even end up dead.

Ok, we are not all technical divers but the issues at hand applies to everyone. Even for the recreational diver in the 20-40 meter range, running out of gas due to a regulator malfunction or otherwise only to realise that the buddy is out in the distance swimming away from you, can have catastrophic affects. If you don’t carry backup, a direct swim to the surface may then be your only option to prevent drowning, but at the same time more than likely lead to a series of recompression treatments and an abrupt end to your diving career. For all divers, whether adhering to the buddy system or not, if there was more emphasis on redundant systems during training, and their use after, less divers would get bent or dead due to an out-of-gas situation.

Diving solo
Maybe it should also be stressed that “diving solo” in this context isn’t the same as diving alone. Diving is a social undertaking, and we like to share experiences under water. It doesn’t mean either that the proximity of your diving partner can’t add to your safety, because help or just an extra pair of hands can indeed come in handy. It is about a mindset. Are you prepared, equipped and capable to independently take care of your own safety and not to make someone else responsible? A little mental exercise can come in handy here: Ask yourself whether you would be comfortable assuming responsibility for your buddy and getting him/her safely out of the water in case he has an accident. Maybe he is panic-prone, who knows? This is for qualified and dive professionals only, who, when you come to think of it, always have to dive solo when doing classes as they can’t rely on anyone else to rescue them.

Do you bring your family on a dive vacation and do you dive with your kids? They are most likely not physically strong, trained or mentally prepared or mature enough to deal with any incidences. They can’t be expected to react as fully capable buddies. Here too, you are in reality diving solo even though you may not be aware of it.

Do the right thing and be safe ■
The incredible and never-ending ballad of the wrecks

Enrico Cappelletti & Gianluca Mirto reports

This incredible tale is not just about a dramatic shipwreck in which one of the two colliding steamboats sinks in the matter of minutes off the island of Elba in the Mediterranean taking along with it to the bottom of the sea a huge treasure—although this aspect of the wreck alone would be a dramatic story in its own right. The story isn’t complete either by including the following inquiries and legal proceedings, which took place in Livorno (Leghorn) in the years 1842 to 1846, right in the middle of a turbulent period of history when European nationalism flaired up and new states were born or unified including modern Italy. We have spanned one and a half centuries to include a clandestine excavation of the wreck and illegal removal of the treasure in the 21st century as well as an international scandal and a police matter which reached into several European countries.

Rise of nationalism

In 1841, every little kingdom, duchy or territory in the politically fragmented area around the Tyrrenian Sea seemed to, maybe not surprisingly, have some stake or claim on this wreck and its precious cargo. In that day and age, there were no such notions as territorial waters or international treaties governing...
ing legal matters pertaining to the seas. A ship's owner had little or no protection nor was there a supporting legal framework in regards to salvaging a lost ship or its cargo. Indeed, this was also the case of the Polluce and it's owner, one de Luchi Rubattino from Genoa.

First attempts
Following the loss of his vessel, de Luchi Rubattino desperately staged several salvage attempts. However, the wreck was lying far deeper than any previous salvage work. Attempting to salvage the wreck of the Polluce was an unbelievable enterprise at the time—it was the first time anyone had tried to go so deep. After two failed attempts, de Luchi Rubattino predictably ran out of money and gave up. He spent 500,000 lire to buy a brand new boat and salvaging attempts cost up to 470,000 lire.

Also as an interested parties we have the king of Sardinia for whom it was its most important trading vessel and the king of France who supplied some of the equipment for the salvage attempts including some heavy lifting chains which can now be found at the naval base of Toulon in southern France. A report of these recovery attempts, in the form of a 48-page booklet dated 1841, is then passed down history from a colonel serving the archduke of Tuscany.

21st century visitors
It is armed with these historical records, obtained from a Parisian investigator of historical documents named Pascal Kainic, a group of eight English divers from East Anglia (a county in eastern England also known as Norfolk) arrive in Genoa in the spring of 2000 - David Dixon, Jerry Sullivan, Kent Sinclair and Nicholas Pearson and some others. None of them had any previous experience with salvage work and only two of them had any previous salvage work. Attempting to salvage the wreck of the Polluce was an unbelievable enterprise at the time—it was the first time anyone had tried to go so deep. After two failed attempts, de Luchi Rubattino predictably ran out of money and gave up. He spent 500,000 lire to buy a brand new boat and salvaging attempts cost up to 470,000 lire.

Also as an interested parties we have the king of Sardinia for whom it was its most important trading vessel and the king of France who supplied some of the equipment for the salvage attempts including some heavy lifting chains which can now be found at the naval base of Toulon in southern France. A report of these recovery attempts, in the form of a 48-page booklet dated 1841, is then passed down history from a colonel serving the archduke of Tuscany.

In Genoa the group charters a supply vessel with a crane and an excavator bucket from the Genoese company Technoamec and hire in an Italian crew. The charter is for three weeks against a fee of €190,000. They set sail and head right for the designated area where they set out their marker buoys. Using a ROV (Remotely Operated Vehicle) with a videolink they search the bottom and try to steer the excavating bucket onto the wreck. With this crude tool they break up the wreck to get to the cargo and the treasure. During their 21 days at sea they manage to bring up and onto the deck of their vessel 1400 tons of mud and scrap iron.

Meanwhile the Italian crew were kept completely in the dark. Their access were restricted to the foredeck and they were forbidden to see or interfere with what was going on with the excavation and what was loaded onto the aft deck.

40 tons of Lead
On March 1, they returned to Genoa. Here they unloaded 40 tons of recovered lead, gave the crew some silver coins and disembarked to return to England without a hint about any treasure to anybody. Nobody knew what really happened.

Back in England, however, the English divers celebrated their amazing adventure and gave interviews to the local daily paper of Great Yarmouth. Once in the headlines of the newspaper the cat was out of the sack as it would soon enough come back to haunt them. Another interesting chapter in the Polluce story was about to begin.
Polluce Wreck

Who and when?
But how did they know about the content of the Polluce in the first place? And who supplied the position coordinates?

Who made the necessary investigations in order to locate the wreck again after so long time – and when? Polluce was just a single wooden hull 50 meters long lying at a depth of 103 meters and there was no mention of this ship in the national and international nautical books or databases.

The auction
The treasure was put up for sale at an auction held on June 21 2001. at the auction house of Noonan Webb in London. It was a precious collection of 2000 silver coins, 311 gold coins, diamonds and jewels and silverware as well as a cup from a cabinet were meant to be put up for sale. If they had sold all they would have realised more than €400,000.

A selection of the seized treasure from Polluce as they were about to be auctioned off

However, it did never come to anything of the sort. On the day before, on June 20, the Metropolitan Police’s department of antiquities arrived on the premises and put a halt the auction after being informed by the Italian police. In the following statement to the press the police said they have received information that the artefacts has been illegally recovered from Italian waters and taken to England. The police seized the collection while the astounded producers insisted that their permission certificates from the Italian authorities were in order. In a sense they were.

The permissions were indeed issued to their company but as the policemen soon enough pointed out the permission referred to another wreck, the Glen Logan, and to the recovery of aluminium ingots. Furthermore as the Glen Logan was sunk in 1916 by a German u-boat off the island of Stromboli near Sicily no less than some 460 miles away this was certainly no small error. Everything was subsequently taken into custody and the four adventurers were first charged and then released. According to Scotland Yard they have not paid a single fine at this point in time.

Returning the treasure
On 10th October 2002, Vernon Rapey, the Scotland Yard detective who seized the treasure handed it over to police officers from the Protection of Patrimony of Florence. But was it all of the treasure or was it only a small part of it? Subsequent attempts to locate the four for further questioning has been unsuccessful, their telephones were not answered and they no longer lived at their known addresses. The local press were convinced that the group had a financier as the divers were unskilled. One of them, David Dixon, has previously been associated with offshore jobs but the others, from what is known, have never carried out work with wrecks.

Comex

During searches in a darkened room behind the shoulders of the helmsman four men are seated along a wall of blue screens. Sophisticated equipment control the ship with milimetres’ precision and enable the men to home in on the exact location where the Polluce is found. It is on the opaque sonar screen the site is first visible. First small, then the location spreads across the monitor.

On edge
Delauze stands up nervously. Takes a close look at the screen. Walks around agitated. Then sits down. The previous visitors have disintegrated and destroyed the wreck and left nothing it seems. The question springs mind: How could the English possibly know about the wreck? Backtracing was dated June 1995, when Delauze identified it for the first time. On this scan the classic silhouette emerges clearly. The line is Polluce’s route

Old map of Tuscany. The big island in the lower left corner is Elba and the strait separating it from mainland Italy is called Channel of Piombino. It was here Polluce collided with the steamer Mongibello and sank in 10 minutes on June 17 1841

Italy and its neighbours in 1841. The line is Polluce’s route

- a: Kindom of France
- b: Switzerland
- c: Empire of Austria-Hungary
- 1: Kingdom of Sardinia
- 2: Kingdom of Lombardi and Venetia
- 3: Duchy of Parma
- 4: Duchy of Modena
- 5: Vatican State
- 6: Kingdom of the Two Sicilies

Auction catalogue. Notice that the treasure is referred to as coming from “Santa Lucia”

Roll of coins. These are French silver coins kept inside a small metal tube to protect them from corrosion. This is the system they probably used to transfer money
Polluce Wreck

A wellplanned action
This is what I have been able to put together: David Dixon, Jerry Sullivan, Kerr Sinclair and Nicholas Pearson arrives from Norfolk, England, to Puerto Azurra on Elba to have the adventure of their lifetime. They knew perfectly well what they were doing and where they were heading even though they tried to give a different impression. They clearly knew that they were in the territorial waters of Italy carrying out an illegal excavation but they have prepared well. Apparently all seemed to be clear and papers in order. The authorities just never checked them properly. Usually the Coast Guard takes months to evaluate documents and issue excavation permits. But in this case an excavation permit was issued within a couple of days. How was this possible? Nor did they seem to wonder, as the local press pointed out afterwards, that the chartered supply vessel was anchored in a completely different position and was equipped for a completely different sort of excavation than the one they had permission to do.

Possible explanations
The Polluce was already a famous treasure wreck for many treasure hunters in Europe. But the authorities had no knowledge of it and for them it was a ship that did not exist. Nigel Pickford lists it as the treasure of Pollux in his authoritative Treasure Atlas, so it is well known. However there has been much confusion about the names Pollux and Polluce. Pollux has to a large extent been the one that got stuck in the minds of people but wrongly so. The Pollux is a vessel that were lost in the beginning of the 1800’s. One reference tells that Ferdinand IV, King of the Two Sicilies, fleeing Napoleon’s advancing forces as they were invading Naples, loaded his treasures aboard an English sailing ship, and sent it northwards, towards a friendly port. But when the sailing ship passed Elba and was seized by French ships, it preferred to sink itself sending the gold of the king to the bottom. According to legend this is a shipwreck of great riches, gold and pearls and one carriage of gold. The legend also places the shipwreck between 1804 and 1806, but the dates are certainly mistaken as the king of the two Sicilies were not allied to Naples in those years. This legend in combination with errors and possible explanations.
The treasure
A newsclip from the French daily paper Semaphore of Marseilles dated June 23rd 1841, five days after the shipwreck, which happened on the 17th at 11.30 pm, states quite specifically that onboard were 70,000 coins in silver and 100,000 coins in gold which was the property of four rich passengers. The contessa de la Rocca even brought a golden carriage. The French media covered the event quite intensely for more than 15 days whereas the Genoese daily hardly mentioned it – a 10 line note on the first day was about all the mention the Italian media cared for.

Misidentification
But there are some details that don’t ring true to me. Among the artefacts seen on bottom are for example a jar of mustard which raises a red flag. This particular jar of mustard was a very particular and expensive brand - one that would very unlikely have been aboard any Spanish sailing vessel at the time. But very possibly on a vessel fleeing with a treasure. Going over the other artefacts on the bottom including the large quantities of iron soon made it clear that this was no sailing ship. In addition, the list of artefacts given back from the Metropolitan police made it perfectly clear that the wreck had to be younger. Of the 2311 coins on that list, a few silver coins were from 1799, but the others were coined between 1800 and 1830, so the shipwreck must at least be younger than 1830.
Buying the rights to a wreck
Nicholas Pearson resurrected Reasdon Beazley, after which the group buys the cargo of the Glen Logan from Her Majesty’s Treasure. The Glen Logan being another wreck in the Mediterranean. The cargo consists of tea, rubber and aluminium and is bought for £1,500. Subsequently the group also acquires the wreck itself who is owned by another salvaging company, the Blue Water Recovery, for £ 2,000. Now the group owns both the wreck and its cargo. Being the formal owners they now want to claim their right to salvage their possessions and they file an application for a salvaging permit referring to international maritime law. This is forwarded through the British consulate in Florence. The application is then forwarded through the various bureaucratic channels to the Coast Guard on Elba which then transfers it back to Florence this time to the Archeological Authority.

Nobody notices that the enclosed documents - which is about a salvaging permit for the Glen Logan – never mentions the position of the wreck – and the Glen Logan is located down in the central Mediterranean. Nobody notices that attached is a seachart of the waters off Elba with a mark that very clearly points to a location three miles from the coast. The island of Elba is found in the Tyrrhenean Sea and not in the central Mediterranean. And nobody connected the dots in so far that the supply ship was equipped with berthing chains only 250 meters long whereas the Glen Logan rests at a depth exceeding 1,500 meters.

The time tool to Coast Guard to process the papers was remarkably short, only a few days. In this short time it was not possible to check all facts and process the papers properly. We can only surmise that they didn’t even read them but just rubberstamped the application.

Before founding their Society and acquiring the Glen Logan, Pearson and his associates purchased from Pascal Kainic - the historical investigator in Paris - the historical documentation about the wreck. The operation Columbia, as they called it, began the first days of February 2000. But things do not go according to plan. There are mechanical problems to the bucket that end up almost destroying the wreck smashing everything around the large motor to dust. There are days of bad weather and the ship had to returns to port in Genoa for some repairs. In a month they work perhaps seven to eight days.

Excavating Polluce with a heavy excavator bucket was not exactly a delicate operation and the wreck was badly damaged

Destroying the wreck
The excavator bucket is guided by their ROV. The Polluce, a steamboat of wood 49 meters long, 7.30 wide and 3.5 tall lay delicately laid out in the sandy bottom as a small and tender structure. They must have assumed that the bucket would simply be able to grab all the valuables and haul them safely back to the surface. How wrong were they. In an excavator bucket the jaws can’t close properly around objects so most of contents are split on the way up as the water run out and the objects just fall back to the bottom.

“The gold from Elba”. The authors has also written a book about Polluce and fatal attraction of her treasures

From the drawings of the ship, the view from above
The booty was carefully logged in a booklet which reveals that the quantity of coins collected was less than 2500. This is in contrast to the 170,000 coins that the French newspaper claimed was brought aboard Polluce in Naples. However, a French diplomatic document from 1841 mentions the number 70,000 which indeed casts doubt where there was another 100,000.

Paid in coins of gold
When the group returned to England in March 2000 they didn’t settle the account with the off-shore company Tecnospamech of Genoa from which they chartered the supply vessel. They did not have any money and instead offered settling the balance with coins of gold. By law the Tecnospamech was obligated to report to the authorities what they have recovered. Some plates, a couple of silver coins and some bottles were mentioned and the Tecnospamech also reported that they didn’t find any gold on the Glen Logan.

Nobody ever seemed to question why they apparently recovered so little after seeing them working intensely for a month just 2.9 miles off the coast with an excavator bucket going constantly up and down.

Incredulous
But there is someone else out there who knows that this cannot be the full truth and informs the Receiver of Wreck in Southampton that this treasure must have been removed illegally. The Receiver of Wreck doesn’t quite know what to make of the matter and passes on the information to the Italian embassy in London, which in turn informs the Italian foreign ministry in Rome.

Ultimately in ends up on the desk of the police commander of the Protection Patrimony in Florence who takes interest in the case and initiates an investigation into the case. Appropriating archaeological artefacts in Italy and exporting them illegally is a very serious matter and one that usually comes with a jail sentence.

The police in Florence contacts the London police. The auction house Noonan Webb are then asked to produce documents authenticated by the Receiver of Wreck. Nicholas Pearson and associates do not have them. In the UK the law states that when something is found at sea it must be reported to the Receiver of Wreck. This is the authority dealing with all reports of wreck from around the UK. It is based within the Maritime and Coastguard Agency headquarters in Southampton, with assistance from Coastguard personnel around the coast.

Pearson protests – and with some reason – that the recovery hadn’t taken place in UK waters and within the Receiver of Wreck’s jurisdiction but in international waters. However, that doesn’t stop the Metropolitan police from arresting the group.

Mistaken identities? The Glen Logan was a big steelhulled wreck that in every aspect was different from Polluce, a woodenhulled paddlewheel steamer from the early 1800s. During the following interviews the divers claim that the vessel they had found was a ship they first called Sea Lion, then changes their explanation calling it the Nosstralino - a wreck that possibly is fictitious. Curiously Nosstralino was also the name of the brand of wine aboard.

Screenshots from the video that the ROV took of the wreck. Gold coins are everywhere it seems
Conceding defeat
But rather than facing years of legal wrangle and even possible imprisonment, they decide to return the booty to Italy and to pay a fine of £2,500 for not having properly declared the finds to the Receiver of Wreck.

And that could have been the end of it. If only if we hadn’t uncovered that not all of the treasure were given back.

Who backed it?
However the British authorities refused to reopen the case and when we asked the auction house, Noonan Webb of London, for a copy of their catalogue they refused too stating that this was now a police matter. In this auction catalogue was the full, but untrue, story as the divers had told the police along with pictures of the treasure. Also there were pictures and names of all those who had participated in shipping the treasure out of Italy. We then went to visit EDP24, the local newspaper in Norwich where we managed to find pictures of the group along with some others.

Also we corresponded with the daily paper of Great Yarmouth who related to us that it was probably a local who had financed the operation a person of such influence that the reporters could not speak openly about it. Collecting information in England was not easy. Not only did we meet with a lot of reluctance but we were also being deliberately put on false leads to wrong addresses and telephone numbers that didn’t exist. But that is all part of the game.

October 2005
As this magazine goes to press around October 1 another excavation of the Polluce is going to take place. This time a legal one conducted by the Italian off-shore company Marine Consulting Diving Contractor n. Ravenna on behalf of The Historical Diving Society of Italy from its salvage what is left from those modern pirates. The excavation will take place in Archaeological Authority to which has offered their consultancy for free. The operation will cost €500,000.

During the operation there will be video clips from the excavation of Polluce on www.xray-mag.com.

On June 17, 1841, the night was calm. The sea, which was smooth and beautiful, was surpassed only by a black sky that was punctuated by a swarm of stars. The Polluce steamed ahead at a cruising speed of over 10 knots, powered by the 160 horsepower engines that drove the two great paddlewheels.

An accord of what passed on that beautiful night of June 17, 1841

The Breakthrough
Then, in December 2004, the ship’s bell from Polluce is found in Paris. In a joint operation between the Italian and French police parts of the treasure that are still missing are traced to a house owned by the very same Pascal Kainic who sold the English divers the historical documents about Polluce in the first place. Searching the premises the police also find other documents and inventory lists implicating both English and Italian citizens who will later have to stand trial. Their offences carries significant punishments but had they at least cooperated and returned the artefacts willingly they would most likely have gotten away with just a fine. But they refused and now have to face the consequences. The trials are set to take place next year.

As this magazine goes to press around October 1 another excavation of the Polluce is going to take place. This time a legal one conducted by the Italian off-shore company Marine Consulting Diving Contractor n. Ravenna on behalf of The Historical Diving Society of Italy from its salvage what is left from those modern pirates. The excavation will take place in Archaeological Authority to which has offered their consultancy for free. The operation will cost €500,000.

During the operation there will be video clips from the excavation of Polluce on www.xray-mag.com.
The Polluce was cruising at a speed of 12 knots and the Mongibello, the steamboat coming in the opposite direction, was travelling at 10 knots. The distance between them quickly closed and the seamen on duty ran to the foredeck yelling “Stop, stop!” in English, Italian and French to the other vessel. Meanwhile, the captain tried to turn east but it was too late and the two ships collided violently.

Panic
The prow of the Mongibello ploughed straight into the port side of Polluce, right behind the paddlewheel wounding her mortally. Scenes of confusion and panic ensued. The helmsman of the Polluce was the first one to jump on the Mongibello, but panic broke out among the passengers. Other sailors and passengers were then guided by the captain and three other seamen to climb on board the Mongibello. Believing that they had saved all, they followed suit and abandoned Polluce, which was sinking fast. But then cries for help were heard, and the captain sailed back in a sloop to Polluce, which now had its stern and port side under water, to rescue seven passengers that had become trapped. Unfortunately, on the bridge, a person, an old captain, had been killed. The seven French sailors on board the Polluce did their duty. Jean Jacques Theveneau, the head steward, acted with great courage to save all lives onboard.

Taken by the sea
Polluce sank in less than 10 minutes. Everything on board was lost—personal letters, mail, effects and the documents. The maritime enquiry into the incident was held at the court of Livorno. It was ruled an accident and noted that nothing could possibly have been done to save the Polluce following the collision.

In other documents, Captain Lazzola of the Polluce explains that when he jumped onto the deck of the Mongibello, he only found a single sailor, completely paralysed with shock, at the helm. Everyone else onboard was asleep. One of the first people to rush up the staircase, was a finely dressed officer, which Captain Lazzola assumed was the captain of the Mongibello and started discussing the situation with him. Little did he realise that the gentlemen before him was not the captain, but the count of Canino, Napoleon’s grandson.

On Polluce, the water now stood up to the bridge, and there was no time to even save the mail. The ship would soon succumb to the waves and become forever lost in the deep sea. All of the 52 survivors had by now been taken to the Mongibello by her sloops when Captain Lazzola found himself standing in water on the bridge. It was only a matter of moments then; there was nothing he could do to save his vessel, and in the last moment, he jumped aboard the Mongibello and watched the darkness and boiling phosphorescent foam close over his steamboat.

On June 17, 1841, shortly before midnight, the beautiful Polluce came to rest on the seabed at a depth of 63 fathoms (103m) awaiting her rediscovery on another day in another era.

WORLD OCEAN ADVENTURES

No other publication covers ocean adventures like the all new Ocean Realm Journal.

Stunning images and tantalizing stories from above and below the surface. Exotic adventure destinations, ocean sports, marine life, science and technology, art and more!

To subscribe visit OceanRealmJournal.com
Photography

Is it cheating? Once the conversation touches on restoring or manipulating images it seems to on something profound, namely our perception of reality. Can we trust what we see? Is a given image a truthful recording of what happened? And what is reality anyway if it depends on the eye of the beholder?

What is real and what has been artificially created is a very important discussion as photos and videos are also used as documentation. In science and in legal matters not to mention something as mundane as the passport photo. On the other hand, inter-

pretations plays a big role too. Just think of the caricaturist with his canny ability to make a couple of casual pen strokes who everyone then instantly recognises as George Bush or Dalai Lama. So it is also quite obviously that by employing some very simple artistic effects can result in recognition and effect just by taking advantage of the way our brains and eyes deal with information.

Artistic license
We accept artistic expression and interpretations and the pictorial arts from photography, graphics and painting covers the whole spectrum from absolute realism and documentarism to the completely abstract.

So what does all this theoretical babbling got to do with our holiday snapshots and underwater footage? A great deal. As digital photography is now gradually taking over the whole arena, giving everyone a chance to...eh, take a shot at shooting pictures underwater it has also given everyone with a computer access to toy around with manipulating images at home using some photo editing program of which some come free with the printer or scanner. Nowadays everyone can cut and paste images, move picture elements around like furniture in a room and paint mother-in-law green in her face. This is already yesterday’s news.

And what a wonderful toy it is. So let’s go back to that opening question. Is this cheating? No it is not. It is options and possibilities. Cheating in this context would be withholding from the audience essential information about how this picture came to be and claiming something else. We know that a drawing, a painting or a collage is an artistic expression and interpretation but we would also like to trust that the documentation is not fake and that the press photo hasn’t been manipulated.

Likewise with your holiday snapshots and underwater footage. A pink dolphin with green eyes might be a fun picture – if not just lack of taste. But don’t claim that you saw such a creature on your morning dive unless you really did have a close encounter with a hitherto unknown species of the Dolphineus genus and are ready to substantiate your claim. You don’t always have to state that your image is manipulated, however – sometimes it goes without saying.

I am a big proponent of image manipulation as it gives me so many possibilities to create impressions and to make use of the whole pallet of options. This doesn’t mean that all pictures should treated. Sometimes the natural picture is best, given or just appropriate. It depends on what we want to achieve and what we want to use the images for.

I discern between three “classes” or levels of treating images digitally:

1. Repairs and retouche
2. Enhancements
3. Art

1. Repairs and Retouche
This is a very old discipline, probably as old photography itself. It just got easier, having computers at our disposal. Repairs and retouche is something that you
the scratches and blemishes so they blended into the background. Doing portrait photography one would often enhance the looks, removing skin blemishes once you were at it anyway. And what do you know – it seems that we are already enhancing reality and pretending it is something else.

Cloning
Removing dust and scratches is not bettering reality, however. It is repairing the reproduction. On the computer we can either use a number of software filters, or by "cloning", which is the preferred method, although a bit more laborious. By cloning, we copy from area of the picture without blemishes, the main big picture in the previous pages is the original scanning of our sample picture, there is a lot of dust on it. On fig 2 and 3 are shown how the Rubberstamp tool is used - this is a tool in many software packages - by which colour is transferred from one area to another. In this case to overlap the dust particles. The main issue with this technique is finding the right area (colour) to clone from, so the end result doesn't stand out as a dark or light spot. “Remove dust & scratches” filters does come with many of the image-editing software packages, which offer a tempting click-a-button solution to the problem. But there are no such thing as a free lunch here either - these filters are not intelligent enough and will also soften and blur every other fine line and structure in the image. As always, it is the good old fashioned manual methods which give optimal control and hence the best results. It does, however, takes longer time but if the picture is going to be used in some kind of presentation the extra effort is just something that goes with it.

2. Enhancements
Moving into the transition zone.
From our basic scuba training we know that we lose colour with depth and consequently the resulting pictures often look flat and monotonous – unless we bring a light source of our own, such as a flash. We often also experience a haze stemming from particles in the water. In these instances a little toning up may be called for. Figures 4 and 6 shows the basic idea. On fig 4 we have the original scanning - and yeah, it is rather dull – and on fig 6 have touched the wee goatfish up to match my memory of the encounter.

What did I do here?
First, as always, dust etc has been removed to clean up the image as describe above. Then I subdivided the image into three parts I treated differently. The three parts in question is the body of the fish, the eye and the background. To treat these areas separately we have to mask them off – like when we spray paint something, we have to mask them off – like when we spray paint something, we have to mask them off – like when we spray paint something, we have to mask them off – like when we spray paint something, we have to mask them off – like when we spray paint something. Then we blended and strength as describe above. Then I subdivided the image into three parts I treated differently. The three parts in question is the body of the fish, the eye and the background. To treat these areas separately we have to mask them off – like when we spray paint something, see figure 5. In your image-editing software there is various functions to create such masks. Their function is to delimit whatever controls and filters to a selected area of the image. Tracing the contour of the area with the mouse I outline the mask and save it as separate image layer. I first made a little mask for the eye (not shown). It is important that the eye stands out clearly and sharply. Cloudy areas in the iris was blot out, the contrast enhanced and the lens made darker by reducing the mid tones. This created a clear gaze. Activating the mask shown in fig 5 I then started working on the body. The yellows and reds were strengthened and the mid tones enhanced to produce better saturation of the most important colours. Inverting the mask to work on the background, by contrast, the blues and greens were enhanced to create depth and pull out the difference between the fish and the background. It is important to apply these adjustments very conservatively. A little too much and the whole scenario will look artificial – like old Technicolour movies.

Finally, the whole image was artificially sharpened by applying the strangely named function “unsharp mask”. Obviously we can't really make picture sharper
Figure 8. First, we crop

Figure 9 - then we colour the details, by dodging or burning in the colour channels

Figure 10 - tinting the background blush by gently applying the filter Variations

Figure 11 - adding effect filters (lens flare etc) and touching up details.

3. Art
The category where everything goes. Let’s continue with our black and white photograph. On fig 8, the picture has been cropped a bit to improve the composition, by getting rid of a lot of empty water. But let us also take the fun a step further by applying some colours. One of my favourite techniques is to recreate the ambiences from the early hand coloured paper prints. Taste is, needless to say, a subjective matter, so just take this as but one example of what is possible. As with many other techniques it has taken a while to hone, so the key is to perform your own experiments and take inspiration from other sources.

First, the image is converted from greyscale to RGB colour. This doesn’t make the picture a colour image to look at, but out of the one original greyscale channel, it creates three identical colour channels (“colour layers”) — one for the Red, Green and Blue composite of a (RGB) colour picture. So far, each one is identical to the original grey one but once we start making them differ the composite image also changes. See figure 7 for how the three channels look - the resulting composite picture on the top makes up the image.

The trick
The trick is not to work in the composite image – as we usually do with our image-editors – but in the individual colour channels. By darkening or lightening areas in a colour channel, for example an object in the image, it changes colour in the composite image. That is how the colours on image 9 appear. The tools we use for this are dodge, burn and sponge. See figure 13 and 14

Select an appropriate diameter for the tool and start carefully dabbing the area or object you wish to colour. Applying dodge, burn and sponge will respective-

The histogram
A histogram (fig 15b) shows which values are represented in the greyscale image or, in the case of colour images, which values are represented in the Red, Green and Blue channels respectively.

Now, on a picture that is correctly exposed or scanned, most values should be represented along the scale, the values to the left create shadows and those on the right are the highlights. If the values are missing at the end it means that either the motif lacks shadows and/or highlights or, more commonly, the reproduction does and it looks dull. What the Auto levels or Auto contrast function do is just to stretch the histogram. Thereby all the values shift in a somewhat degrading process that does not add any new info to the image. The result is the characteristic jagged histogram below.
ly lighten, darken or weaken the colour. Experiment! If you activate the little eye symbol at the composite channel you can follow the overall result while working in just one channel. Find another object, choose another channel and another tool and see what happens then. By applying this dabbing technique I turned the black and white picture on fig 8 into fig 9. So far, so good. But isn’t the background a little dull too?

Doing the background

To get to figure 10, I darkened the lower left corner by enhancing the midtones here but only in the blue channel whereby the overall ambience turned more blue and sealike. On figure 11, I applied the “lens flare” filter to enhance the diver’s torch. And finally, to get to the end result in figure 12, I cropped some more of the top to get rid of some light water. Voila!

The motif, by the way, is the wreck on Brothers Island (Red Sea) taken on Agfa Scala 200, the black and white slide film.

And the conclusion is... Image manipulation is definitively ok—as long as we honestly declared that we have done so and are not deceptive. It can often make an image much more exciting, though chasing effects for effects own sake is meaningless. Do it with a purpose. Use effects and style to convey a certain interpretation of reality. In essence say “try and look at this situation, subject or scenario this way”. Think of what Vincent van Gogh did. His images are not realistic in a photographic-naturalistic sense. But what a punch they pack!

What to use instead

There are a number of options available, which all have that in common that they enhance what is already there or add something.

One good tool is Curves which can be used to enhanced the spectrum in selected areas, yet in a smooth way. This method in non-destructive and, in principle, reversible.

Another good, and easy, tool to experiment with is Variations which tint the whole image gently—see the transition from figure 9 to 10.

Visit our website: www.ulcs.com for product info & to locate a dealer near you. Unable to find a dealer?

E-mail: info@ulcs.com
During the first years of World War II Italian frogmen demonstrated to the world how effective a weapon a frogman could be. Hidden by the water, these frogmen mined the Allies' ships as they were moored 'safely' in their own waters. Even with quite small numbers, and using relatively small resources, the frogmen were a very powerful force. The English, especially, were quick to copy the equipment and train their own frogmen, and after the war many nations supplemented their armed forces with frogmen units.

The idea of such a weapon arose in World War I, when experiments were carried out using different vessels to carry mines into the Austro-Hungarian naval base in Pola. The weapon was developed during the inter-war years 1915. While the war was raging on the battlefields of Europe, and submarines were terrorising the ships on the high seas, the Austro-Hungarian fleet and Italian fleet lay mostly well protected in their harbours, surrounded by mine-fields and anti-submarine nets. This passivity was, in the main, due to the ongoing submarine war.

In 1915, after Italy had severed its connections with its German and Austrian allies, and joined the English-French Alliance, Italian naval officers had thought long and hard about how the Austro-Hungarian fleet could be attacked in the harbour.

The first attempt, carried out from Venice, was made by the Italian naval captain Pellegrine, who, with three other crew members in a motor-boat, tried to attack the Austro-Hungarian fleet in Pola. Pellegrine’s boat Grillo was equipped with caterpillar tracks which enabled it to crawl up over the various barriers in Pola. Two torpedoes, which hung on the side of the boat, were to be sent against the ships in the harbour. Pellegrine’s attempt failed because the boat was discovered as it was forcing a barrier.

Pellegrine and his crew spent the rest of the war in captivity.
Targetting Pola

The desire to hit the Austro-Hungarian fleet in Pola was, however, undiminished, and much thought was put into possible solutions. Naval-lieutenant Raffaele Paolucci worked out a plan in 1918 whereby he was to be transported by motorboat to about a sea-mile out of Pola. From here he would swim into the harbour towing a mine. Under one of the battleships he would tie a four meter-long rope to the mine and thereafter sink it by letting the air out of its two floatation tanks. The other end of the rope was to be fixed to the hull of the ship. The mine, which contained about 100 kg of TNT, had an automatic timer, and would explode in about 4 meters of water close to the side of the ship. As soon as the mine was activated Paolucci would swim out of the harbour towards the outer breakwater and wait for the explosion. He would then swim out to sea and, with his back to the enemy, signal to the motorboat to pick him up.

Mignatta

After months of nocturnal swimming near Venice, towing a mock-up of the mine, he abandoned the project. Simultaneously with the efforts of Paolucci, Italian engineer and naval officer Raffaele Rossetti was working on a modified compressed-air torpedo, named Mignatta, which, half-submerged, would carry him and another crew member into Pola. The men, in diving suits, would sit astride the torpedo and steer it into the harbour and thereafter over to one of the battleships. Two mines, each of 170 kg TNT, were fixed to the head of the torpedo. The mines were to be hung in a 4 meter-long rope under one of the battleships. Rosetti had constructed a powerful magnet which should keep the rope fixed to the side of the ship ready for action. Two models of Mignatta were built, S1 and S2.

Now or never

However, in October 1918, an armistice was in the offing, and it was obvious that it was now or never if the Mignatta was to see action. In the evening of 31 October, 1918, a motortorpedo boat from Venice set sail for Pola. On board were Paolucci and Rossetti and, on the deck, the S2 and a motorboat which would carry the two men and the Mignatta close in to Pola. At 22.13 the S2 was released from the motorboat and sailed in to Pola, which was reached at 02.00 on 1 November, 1918. In the harbour the two men passed three anti-submarine nets by pulling the S2 over them. Once inside the harbour they steered in between two illuminated battleships and directly towards the 21000 ton battleship Viribus Unitis. They fixed one of the mines and then rapidly sailed away leaving a trail of silvery bubbles.

On their course away from the battleship they were discovered, but before being taken prisoner they had managed to arm the second mine, and then left the Mignatta to its own devices. It wandered around in the harbour, and when the compressed-air was exhausted it finally came to rest against one of the ships.

War’s over - well almost

That they were not discovered before was due to the fact that it was a day...
thought to be no reason to keep the watertight doors closed. Immediately after this first explosion a second explosion was heard. It was the second mine, still attached to the Mignatta, that exploded directly against the side of the 7000 ton freighter Wien, and sent her to the bottom. Ten days after Viribus Unitis had been sunk Germany accepted the Armistice conditions, and World War I was brought to a close.

New weaponry
The attack at Pola was a success – the Italian fleet had obtained insight into a new weapon. The weaknesses of the weapon were that the crew were visible above the surface of the water, and that the compressed-air torpedo sent out a stream of air-bubbles. These deficiencies would have to be corrected so that an attack could be carried out with the torpedo and crew completely submerged, and without air-bubbles giving evidence of the attack.

The interwar years
In the interwar years another alliance was formed, an alliance in which Italy was not allied with England. Italy felt itself squeezed between the English fleet in Alexandria and the French fleet in Toulon. That England could rapidly reinforce their Mediterranean fleet with units from their Atlantic fleet didn’t make the Italian frustrations any the less. Italy needed a weapon that could reduce the scope of a possible blockade.

The First Frogmen
It was two Italian divers and naval officers, Teseo Tesei and Elios Toschi, inspired by Rossetti’s Mignatta, who would begin the development of the weapon that the world would come to know as “Frogmen”. However, before this weapon could be brought into service, diving suits, breathing apparatus and ‘torpedoes’ had to be developed.

Further developments
Teschi and Tesei served as engineers for the submarines at the naval base at La Spezia. The development and construction of an improved Mignatta started in 1935, and in January two prototypes were tested. Later in the year the new weapon was demonstrated, under the strictest secrecy, for the Admiralty in a dock at the La Spezia basin.

The Maiale
The weapon mostly resembled a torpedo but was in fact a miniature submarine designated SLC (Siluro a Lenta Corsa) with the nickname Maiale (the pig). The torpedo was 7.3 m long, including the explosive head; the diameter was 0.53 m, and two frogmen could sit astride it. The compressed-air motor had been replaced by a 1.1 HP electric motor. The power of the motor was later increased to 1.6 HP. In 1935 the explosive weighed 220 kg, but was later increased to 250 kg and thereafter to two amounts of explosive, each of 150 kg. The capacity of the batteries allowed a voyage of 5 seamiles at 2.3 knots or 4 seamiles at 4.5 knots. The torpedo had diving tanks which permitted the crew to increase or decrease the buoyancy. A separate compartment contained compressed-air tools to cut through a submarine net. A screen in front of the leading frogman protected the crew against the water flow. Behing the screen were the steering controls and the luminous navigation equipment. The maximum diving depth was 40 meters.

The crew wore waterproof Belloni suits (Vestito Belloni) constructed by Captain Belloni. The Belloni suit actually consisted of two suits, an inner suit of thin elastic rubber, and an outer suit of heavy can-
Rebreathers

The breathing equipment that was required in order to sail completely submerged, was initially a modified Davis jacket – an ascent jacket designed for submarine crews. The equipment had a closed-circuit system with manual control of the oxygen, and a potassium carbonate cartridge to absorb the carbon-dioxide. Captain Belloni mounted a helmet with two windows onto the equipment and modified it with bigger chalk containers and a bigger oxygen supply, thereby obtaining a greater operational time. Later, a Pirelli daughter-company produced an oxygen apparatus ‘model 49’ for the unit. Dosing of the oxygen was now continuous, so that the frogmen did not have to keep filling oxygen into the breathing-bags. Model 49 was replaced in 1936 by Model 49/bis. This apparatus was employed towards the end of the Second World War after which it was replaced by ‘model 50’ from Pirelli. This apparatus had one large window. Its operational time was more than four hours. At the same time, fast motor-boats (called MTM) were developed which could be steered towards enemy ships. The boat carried a 300 kg explosive charge which detonated on contact with the objective. At an appropriate distance from the target the rudder was to be fixed and the crewman to abandon the boat, which would then continue at high speed towards the target.

The training of the crew started with a high speed towards the target. The training of the crew started with the objective. At an appropriate distance from the target the rudder was to be fixed and the crewman to abandon the boat, which would then continue at high speed towards the target.

The Belloni suit. Picture electronically enhanced from bad original

The later version, Salus, of the early adapted ascent jacket turned CCR rebreather. This version has only one window in the mask

The suits collectively comprised a single unit. When worn, the inner suit could only be seen at the wrists of the frogman where the cuffs ensured a close watertight fit, and at the throat where there was also a close watertight fit. In the middle of the stomach there was a buttoned flap in the outer suit. This flap covered the opening to the inner suit. The opening was a round tube of thin rubber which emerged perpendicularly to the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed rubber which emerged perpendicularly to the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo’. When the frogman was under water and the oxygen apparatus was activated, it was not possible to see at the wrists of the frogman. This tube was nicknamed the kangaroo'.
In 1938 commander Paolo Aloisi was promoted to head of the First Light Flotilla, which consisted of very fast boats. The Ministry also asked Aloisi to take over the torpedos as well as the MTM-boats. Aloisi quickly saw the possibilities in these weapons, and under his leadership both Maiale and the MTM-boats underwent several improvements.

In July 1939 the political situation in Europe was such that it was obvious that a war was imminent. As a consequence of this, the Naval authorities asked Aloisi to accelerate the development of the weapons and begin the training of the crews. The earlier pilots were transferred to the First Light Flotilla together with the new trainees. The carefully selected crew undertook a hard physical training as well as a thorough mental training.

The elite

Only the absolutely most suitable were accepted. Those that were found not to be suitable were returned to their previous unit with a diving certificate.

Free-swimming frogmen were also trained, these being designed Gamma-men. Their equipment was modified in several ways in order to make it easier for them move under their own power. The suits were tight-fitting, and they had fins on their feet. The oxygen equipment had a smaller oxygen-cylinder with consequently a shorter operation time. The underwater operation time for the Gamma-men was about 40 minutes. The Gamma-men were trained to cover a distance of 6 – 7 km at a speed of more than 1.5 km per hour. The oxygen equipment was only to be used when they were close to the objective. As camouflage the Gamma-men had a net with seaweed over their heads. It was intended that the Gamma-men should be brought close to the objective by submarine or fast motorboat, or that they should operate from a neutral coast.

Minelaying

Two types of mine were developed, which the Gamma-men could carry around their necks or in a belt. ‘Leech’ was a mine with 2 kg of explosive. The mine was held under the ship by means of an inflated rubber bladder which held the mine against the bottom of the ship. When the mine had been placed the Gamma-man activated a detonator which detonated the mine after a given interval. The other type of mine, the ‘Limpet’, contained 4.5 kg of explosive, and was fixed to the keel by means of a clamp. The detonation of this mine was arranged so that it would sink the vessel out in the open sea. The point at which the mine would explode was controlled by a propeller on the mine. The propeller first began to turn when the speed of the ship was above 4 knots. After a given number of revolutions, which corresponded to a given sailed distance, the mine exploded. The ship was thus sunk where salvaging of the...
ship and its cargo was impossible or more complicated than in harbour, and the suspicion of a frogman attack probably did not arise.

It was originally intended that the torpedoes should be launched from amphibious aircraft, but it was the submarines that were given the job. Several submarines had airtight containers fixed to their decks, each of which could hold a torpedo. The containers were intended to protect the torpedoes from damage from depth-bombs and from damage if the submarines were forced down into deeper water.

In containers on a sub

The submarine crew could either open the containers while the submarine lay awash at the surface, or they could exit from the submarine while it lay on the bottom and thereafter open the containers, pull the torpedoes out and start the operation. Both forms of launch were trained.

Attempts were made with short-wave radios with which the crew could find their way back to the submarine after the operation had been carried out. The trials were not successful and were thereafter dropped. It was realised that it would not be possible to bring the torpedoes and crew back with the submarine. The crew had to find a neutral coast and drop the torpedoes there. That the crew didn’t have to worry about getting back to the submarine would give them greater motivation for the operation.

The first practice attacks were carried out at the beginning of 1940. The objective was the cruiser Quarto which was anchored in the bay outside La Spezia. Three Maiales took part in the exercise, two of them broke down and couldn’t complete the exercise, but the third managed to place a dummy mine under Quarto.

A two-year break in the work on the weapons and in the training of the crew meant that the weapons were not fully developed when Italy declared war on England on 10 June 1940. The first attack with Maiale should have taken place on the night between the 25 and 26 August 1940 against the English warships in org Alexandria – but things turned out quite differently from what the Italians had hoped.

To be continued in our next issue
Diving and Subaquatic Medicine
by Christopher Lowry, John Pennefather, Robyn Walker, Carl Edmonds (Editor)
Hardcover: 719 pages
Publisher: Arnold Publishers; 4th edition
ISBN: 0340806303
Price: GB£40.00
A clinically authoritative guide to all aspects of diving medicine, Diving and Subaquatic Medicine encompasses the full range of diving disorders suffered by both amateur and professional deep sea divers. The authors present each medical disorder from historical, etiological, clinical, pathological, therapeutic and preventive perspectives. Case histories are provided with accompanying illustrations, boxed summaries and key points for quick reference. Beginning divers and students of dive medicine will find the book invaluable reading with its introductory chapters on physiology, physics and equipment. The latest research, and diving data as well as newly described dive diseases, current diving trends and equipment, free and indigenous diving, and comprehensive appendices with vital diving data are included in the new edition.

www.aquapress.co.uk

An Ocean Odyssey: A Book by Stephen Wong & Takako Uno
Hardcover: 240 pages
Date: April 2005
ISBN: 0340806303
Price: US$60.00
A collection of the couple’s finest wide blue images of the sea are captured in the pages of this new coffee table portfolio book by Stephen Wong and Takako Uno. Images portray magical moments with pelagic inhabitants of the sea and their relationships with the oceans that affect all life on this planet. With a forward by award winning National Geographic Photographer in Residence, David Doubilet, and guest writers such as Yohsino Yusuke, Yoshi Hirata, Lee Peterson and Hiroya Minakuchi, the book delivers a profound perspective of the underwater world. For more information on the authors, visit: www.stephenwong.com or www.takakouno.com
To order, contact: saiwong@netvigator.com

The Devil’s Teeth
A True Story of Obsession and Survival Among America’s Great White Sharks by Susan Casey
Hardcover: 304 pages
Publisher: Henry Holt and Co.
Date: June 2005
Price: US$25.00
Combining adventure, reflection, humour and natural history, author and former Time editor Susan Casey brings to life a story that takes the reader on a wild ride around dangerous islands near San Francisco that have resisted civilization for over two hundred years. At the centre of her story are the sharks of the Farallon Islands and her obsession to learn more about these 20-foot creatures. Hitching a ride with a research vessel, the only means of transport to the area, Casey joins two surfing biologists who bunker down in a haunted 135-year-old house from which they conduct their surveys of the sharks. The thrilling account should prove to dig right down to our primal instincts.

www.amazon.com

Tsunami, the day after
DVD Documentary: 20 minutes
Images by Manfred Bortoli
Editing and direction: Daniele Iop
Text and story: Massimo Boyer
Price: EUR €18.00
From the creators of the award-winning series, On the Edge of Reefs, winner of the Rolex Award of Excellence and Best Film at the Celebrate the Sea Festival 2003, comes a new documentary covering the recent tsunami in the Indian Ocean that created large-scale devastation from Asia to Africa. The film focuses on the effects of the tsunami as well as human impact upon the underwater world.

www.edge-of-reef.com

The Cave
Director: Bruce Hunt
Writers: Michael Steinberg, Tegan West
Company: Columbia Pictures
Cast: Morris Chestnut, Eddie Cibrian, Kieran Darcy-Smith, Cole Hauser, Lena Headey, Marcel Iures, Daniel Dae Kim, Piper Perabo, Rick Yarnell
Length: 1 hour 37 minutes
Hired by a team of scientists who stumble upon the ruins of a 13th century abbey built over the entrance to a giant underground cave, a group of thrill-seeking professional cave divers travel to Romania with the latest equipment to investigate the depths of the cave system. Stranded in the cave when it suddenly collapses, the explorers find themselves not just in a new eco-system, but victims of a phenomenon that mysteriously mutates them into primeval beings.
At the height of the Second World War, on a dark moonless night on a deserted beach in the Islanderun Bay in Turkey, a secret agent from the Italian special forces is preparing for a dive that has to take place under absolute illegal circumstances. The scenario could be a model for a future James Bond movie. All the necessary ingredients are there. The secret weapons, fins, mask and a black suit, a fancy underwater watch and compass. The diver is also wearing a face mask and diving a closed circuit rebreather carrying with him two mysterious metal containers each weighing 12 kg. In the background, the ghostly silhouettes of enemy ships are barely visible. They are awaiting permission to enter the port.

Mysterious explosions
The frogman slips into the water and submerges. The only sounds to be heard are the wind and waves breaking against the rocky shoreline. The moon comes out for a short moment from the clouds that shroud it only to disappear in an instant. Some hours pass. The lonely diver comes back and emerges from the sea that is already turning gray from an approaching storm. The surf soon erases any telltale footprints left in the sand. The following day goes by and nothing happens. The ships come into port, one by one, to load their cargo of war supplies and go back out. One ship, which is loaded to the brim with enemy transports, is confidently departing the port when she suddenly blows-up in an enormous explosion that sends her to an early grave in the open sea.

A child of the war
It was on the battlefields of WWII where the story of the Technisub company began with a special group of frogmen, consisting of Italian, German and Japanese military underwater experts who carried out secret operations in neutral countries that didn’t take part in the war. Turkey was one such country that didn’t officially take part in the war action, but nonetheless was regularly delivering resources to all the warring parties such as iron, chromium and titanium—raw materials of strategic influence on the outcome of the war. Ships from several countries visited Turkey’s ports to load ore and metals for their military industry.

Luigi Ferraro, who later went on to found Technisub, was at that time officially an employee of the Italian embassy in Turkey. In his daily life, he used only civilian clothes and carried a diplomatic passport. But in reality, he was a highly trained diver with very special qualifications and a member of a top secret frogmen’s group. As such, he lead a very dangerous life. If the police forces or a military patrol had caught him with his diving equipment, he would certainly have been shot on sight or faced execution as a spy according to the war laws of the time. But he continued to gather military intelligence, and he paid frequent visits to the port. There were so many ships that he frequently spent days on a raid outside

Underwater Technologies in Action

At the height of the Second World War, a dark moonless night on a deserted beach in the Islanderun Bay in Turkey, a secret agent from the Italian special forces is preparing for a dive that has to take place under absolute illegal circumstances. The scenario could be a model for a future James Bond movie. All the necessary ingredients are there. The secret weapons, fins, mask and a black suit, a fancy underwater watch and compass. The diver is also wearing a face mask and diving a closed circuit rebreather carrying with him two mysterious metal containers each weighing 12 kg. In the background, the ghostly silhouettes of enemy ships are barely visible. They are awaiting permission to enter the port.

Mysterious explosions
The frogman slips into the water and submerges. The only sounds to be heard are the wind and waves breaking against the rocky shoreline. The moon comes out for a short moment from the clouds that shroud it only to disappear in an instant. Some hours pass. The lonely diver comes back and emerges from the sea that is already turning gray from an approaching storm. The surf soon erases any telltale footprints left in the sand. The following day goes by and nothing happens. The ships come into port, one by one, to load their cargo of war supplies and go back out. One ship, which is loaded to the brim with enemy transports, is confidently departing the port when she suddenly blows-up in an enormous explosion that sends her to an early grave in the open sea.

A child of the war
It was on the battlefields of WWII where the story of the Technisub company began with a special group of frogmen, consisting of Italian, German and Japanese military underwater experts who carried out secret operations in neutral countries that didn’t take part in the war. Turkey was one such country that didn’t officially take part in the war action, but nonetheless was regularly delivering resources to all the warring parties such as iron, chromium and titanium—raw materials of strategic influence on the outcome of the war. Ships from several countries visited Turkey’s ports to load ore and metals for their military industry.

Luigi Ferraro, who later went on to found Technisub, was at that time officially an employee of the Italian embassy in Turkey. In his daily life, he used only civilian clothes and carried a diplomatic passport. But in reality, he was a highly trained diver with very special qualifications and a member of a top secret frogmen’s group. As such, he lead a very dangerous life. If the police forces or a military patrol had caught him with his diving equipment, he would certainly have been shot on sight or faced execution as a spy according to the war laws of the time. But he continued to gather military intelligence, and he paid frequent visits to the port. There were so many ships that he frequently spent days on a raid outside
Luigi Ferraro was one of the most successful frogmen of the war and went on to become a legend and a hero awarded Italy’s highest military medal for his valor. He had single-handedly mined four enemy transports of which three blew up and sank. After the war, he left the shadowy world of the secret services and returned to a homeland ravaged by war only to find himself unemployed and homeless.

Since he was perfectly trained and skilled for working underwater, he decided to go into the salvaging business clearing the harbour of Genoa, one of the largest in Italy, of wreckage and salvaging ships.

He soon found himself working round the clock as the supervisor of the salvaging operations in the harbour while spending his weekends spear fishing. During one such weekend, he met and became acquainted with another person who also loved the sea and was a keen underwater hunter. It was no other than Nanni Cressi, the future founder of Cressi-sub Empire.

At this time, Nanni used homemade fins crafted by hand from a simple piece of rubber, a mask which he cut from an inner tube of a car wheel, and a homemade underwater gun. Luigi, on the other hand, was already the happy owner of the real fins and the mask made for the navy. Both being avid underwater hunters, they ended up discussing the advantages and shortcomings of their equipment.

It seems unbelievable today, but fins were a top military secret in the Italian Special Forces between 1940 and 1944. When the group of frog-men gathered for their training, they were given their fins by the military police just before they went on a mission, and they had to hand them back immediately after returning from the mission.

Cofounding Cressi-sub
Nani Cressi had a completely different background. He came from the banking business, and as such, he knew something about financing and economy. Not surprisingly, the two came together and decided to make a joint company in which Mr. Cressi provided the financial means, and Luigi Ferraro was the man with the experience, knowledge and ideas. Their cooperation became so successful that it went on for sixteen years.

During his years working for the Cressi company, Luigi Ferraro invented the first mask ever to be created with a nose, then named “Pinocio”, and first fins ever to made with a fullfoot pocket.

Founding Technisub
In 1962, at the age of 48, Luigi Ferraro created his own company. The famous logo with the dividers over a fish is also from 1962. Today, many people are employed at Technisub working with new fin designs, but back then, every inventor was afraid that somebody else would copy their ideas and start producing similar fins. Luigi Ferraro never let any such petty concern stand in his way, and in 1963, he came out with a revolutionary new de-

DEMA SHOW 2005
October 4-7, 2005
Las Vegas Convention Center
LAS VEGAS, NEVADA
www.demashow.com

Back in Las Vegas for the first time since 2002, DEMA Show provides you with more business resources and more value than ever before!

See more than 600 exhibits of the hottest equipment, destinations, services and accessories on the planet. View the current exhibitor list at www.demashow.com.

Connect with more than 10,000 industry professionals on the show floor, on the strip or at the industry’s biggest social event, the DEMA Awards Party.

Participate in hundreds of hours of educational programming sponsored by DEMA, exhibitors and certifying agencies – including enhanced Ships to Reefs sessions, the Adventure Travel Symposium, and FREE Power Up Your Morning seminars.

150,000 square feet • 10,000+ attendees • 600+ exhibits • 4 days • 1 event
IT ALL ADDS UP TO A WINNING OPPORTUNITY FOR YOU!

Make plans to attend or exhibit at www.demashow.com

123 123 123

The groundbreaking fin Caravelle had a detachable blade

The James Bond gun

Jaguar was very reliable and never misfired. In those times that was quite unusual. It’s reliability was due to phenomenal simplicity—12 parts were all it was made of. It was safe, unproblematic and shot very, very well. That Sean Connery used the Jaguar to kill off the bad guys in the movie “Thunderball” didn’t do any harm either. It soon became known as James Bond’s harpoon gun. La Spirotechnique could not let this opportunity pass and bought a 20 percent stake in Technisub. Thus, since it’s early days Technisub has essentially been an Italian-French company.

At the same time, Luigi Ferraro became the exclusive distributor of SPIRO (Aqua Lung) products in Italy. The French partners later increased their share in the business, and in 1982, Paolo Ferraro, Luigi Ferraro’s son, became president of the company. Now the most famous Italian diver of all times, Professor Luigi Ferraro is 89 and still leads a very active life. He writes books, meets with friends and it is rarely possible to find him at home. Until only a few years ago, he was still diving. On his 80th birthday, the Italian Navy honoured him with a grand parade and
the arrival of a destroyer in Genoa. There was a huge underwater cake, and Spiro-technique made a regulator in pure gold to his honour. But most importantly was the special pride the common Italian citizen took in their famous countryman. The main creation of his life, Luigi’s innovative Technisub company, is still among the world’s leading manufacturers of underwater equipment.

Technisub Legends

The current president of the company is Paolo Ferraro. Just as his father, he is in love with the sea. At 22 years old, he became the youngest FIPSAS instructor awarded the highest rating of three stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars. Some say, it compares to winning the Olympic gold medal and the Italian stars.

Stratos fins

Paolo Ferraro explains: “The new laying technology combining two materials (rubbers and plastic) was first applied to the manufacture of these unique fins. The blade is made up of a very elastic plastic covered with a thin 1% mm thick rubber layer giving the fin its unique elastic properties. Originally, it was the idea of our lead designer Gianni Beltrami. We made the first sample, and the result was simply awful. But we kept working at it and began to combine various types of plastics and rubbers. Eventually, our special technique of rubber high pressure (200 Bar) mould injection was created. Maturing the technology took more than six months, and it was only after conducting thousands of experiments that we found what we were looking for. The most important factor appeared to be an exact ratio between the thickness of plastic and the rubber covering. It took three years from conception until we had the first real prototype of the Stratos fin ready. At the time, these fins were completely novel. It was a new concept produced by a groundbreaking manufacturing process.

Field testing

Paolo continues, “We made three types of experimental prototypes of the Stratos fin. One was very soft, one was average and one was very rigid. Each of them were very good fins. But how could we find out what the opinion was on these different models among various people from diving beginners, men and women, and different nationalities of athletes? To find out, we dispatched test samples to America, Germany, Japan, South Africa, New Zealand, France and all over Italy.

All the fins came in black and only differed by the presence of one, two or three small holes in the fin blade. The number of holes was code for the rigidity of the fin. Many people asked us what the meaning of these holes were, but we refused to explain. We just asked people to try the fins and tell us about their opinion and identify which of them they liked the best.

Most of them liked the fins with two holes—fins with medium stiffness. We then understood that this model would become a commercial success. But the most exciting result was a test published by a renowned American dive magazine which discovered Technisub Stratos, branded in America under the name Blade, and recognizing it as one the best fins in the world. The Stratos and their mass production firmly put Technisub on a pedestal as one of the leading manufacturers of fins.”

Next generation: The Idea3

All sorts of creative ideas emerge in the minds of the designers at Technisub, so one of the most important decisions is choosing which one to go with. The idea of creating the Idea3 came directly from Paolo Ferraro. Who hasn’t been dreaming about moving underwater as freely as a dolphin, a shark, or a seal, effortlessly and without too much physical effort? The Idea3 is the physical manifestation of such an idea and the result of more than three years of scientific research and a rather large investment for such a product.

At Technisub, each prototype fin has to pass weeks of testing in a special apparatus, and only if a whole range of parameters are within an acceptable limits, will it pass for further testing under real conditions. Today, the Idea3 fin is exhibited at the honorary exhibit of the Leonardo De Vinci museum of scientific and technological achievements in Milan. What is so special about this elegant fin?

Injection moulding

Again the answer lies in an unique injection moulding technology which allows simultaneous injection of three materials with different plastic properties. After polymerization, each material obtains the characteristics pertaining to their function. The thermoplastic soft rubber is responsible for creating the comfort of the foot-pocket; the elastic thermopolymer in the central section of the blade and the "heart" of the Idea2 product provides its variable geometry; and the stronger and rigid material for the peripheral parts provides the rigidity and structural framework.

The philosophy behind Idea3 is to provide the maximal effect from a downwards leg stroke with the least possible resistance during the upstroke. In other words, optimizing the ratio “effort demanded / thrust received”. The fine performance is said to be down to three factors:

1. The polyelliptic overall geometry which increases the surface of the fin during the kicking phase and prevents turbulent flow over the blade that would produce water resistance.
2. Lateral rigid edges are filled with rubber. Reduces weight in comparison with any other fin the same size, reduces loading on the legs during navigation and aids performance by working like a spring.

3. Variable geometry of Idea3 works similarly to a duck’s webbed feet. On the downwards stroke, the central part of the fins is curved and scoops a greater volume of water creating a powerful jet effect. At the upstroke, the blade becomes more streamlined.

Technisub masks
The flagship of the company is the Look mask, which is already a classic. Millions of these masks have been sold since they came onto the market in 1985. They have proven to be a popular choice all over the world due to their magnificently seals and suitability for all types of faces. The lenses are also very easily replaced by correcting lenses with dioptries for the diver who needs glasses.

Torchess Vega and Lumen
VEGA has been a product name since 1965. Vega is the name of one of the brightest stars in the sky, and so Luigi Ferraro’s wife thought it would be a suitable name for a dive lamp. The modern Vega is a bright powerful light with reliable nickel–cadmium battery and a tough ergonomic body. Lumen, the best known compact torch from Technisub, joins the Idea fin in exhibition at Milan’s museum of scientific and technological achievements. The compact bright torch fits easily into a BCD pocket.

Annually, Technisub makes hundred thousand fins, masks and snorkels for the AquaLung group. These products seem to be the preferred choice by divers of various nationalities from all corners of blue planet. Technisub certainly does not compromise with their quality requirements. At Technisub, there is no production of the first, second or third class quality products. Only the top quality equipment leaves the premises, and Technisub remains committed to be on the cutting edge of development.

Every year, their engineers come up with new ideas. Sometimes they are small ideas, sometimes they are essential new concepts, but they are constantly introducing new materials and coming up with original technologies ensuring that in the future, we will find Technisub a leader at the forefront of the dive equipment manufacturing industry.

■

THE AUTHOR AND EDITOR WISH TO EXPRESS HIS DEEP GRATITUDE TOWARDS MR. PAOLO AND LUIGI FERRARO FOR THEIR KIND ASSISTANCE IN PREPARING THIS ARTICLE.

Join the cause and save the sharks
SAY NO TO SHARK FINS
Sponsored by Celebrate the Sea 2005 Singapore

Shark finning is considered a cruel, wasteful act that, for every sale, millions of sharks are caught by fishermen who cut off their fins and drop the sharks’ maimed bodies back into the water, often still alive, to sink to the bottom of the sea and drown a horrible death. Several shark species are approaching extinction. Stop the slaughter.

Say no to Shark Fins: www.celebratethesea.com
Happy 30th Birthday Jaws!

30 years ago audiences across the world, even those far removed from the ocean, screamed and jumped from their seats when the movie Jaws came to town. I have many fond memories of growing up in Cape Town, jumping into waves from cliff tops, spearfishing in large deep rock pools, and "playing" with baby sand sharks. As now, I then loved the sea, and all its inhabitants.

When Jaws was screened I loved this film, not for the gore, the blood, and on-screen loss of life, I just thought that this shark, the Great White, was the most awesome animal I had ever seen. A combination of power, stealth, and sheer natural beauty. This love affair for this species has been with me since those formative days.

This film’s legacy, is a mixed one of creating fear beyond rational thinking, "will I get bitten by a Great White Shark if I go in the water". To the mass slaughter of all sharks across the globe.

I am pleased to say that today we live in more enlightened times!

Great White Sharktales facts

Great White’s belong to the Lamnidae family [Mackerel Sharks]

Five species belong to this family
Shortfin mako, Longfin mako, Salmon shark, Porbeagle shark, and the Great White. All sharks in this family have a conical snout, lateral keels [one or two] on the peduncle and homocercal tails – the tails upper and lower lobe are of equal length.

Social creatures

Often portrayed as the “lonely hunter” Great Whites are social animals, swimming in groups of 10 or more animals.

Peter Benchley’s novel JAWS was the beginning of the modern stigmatisation of sharks as evil predators that are better killed. Very much to his later regrets.

Giving birth to live young

Females taking between 12 and 14 years to reach sexual maturity, males only need 9 to 10 years. Great White sharks are aplacental viviparous, meaning that they bare live young without connection to the mother [aplacental] during pregnancy. To obtain enough nutrition whilst inside the womb, embryos feed on other eggs [oophagism]. The number of embryos carried during an average pregnancy is between 2 and 14. It is thought that the average pregnancy gestates between 12 to 14 months with the pregnant female leaving other sharks just before giving birth.

External Markings

Great white sharks have a black or dark grey colour on their top surfaces and a white underside. The pectoral fins have black tips, on the underside and a black axillary spot where they join the body.

In cool water

Great whites are found in most oceans between latitudes of 50° and 60° in both hemispheres, preferring cooler waters where they stay close to shore and shallow but they have also been found at depths exceeding 100m.

Hot bodies

Semi-warm-blooded with their body temperatures, staying about 10-15°C above the ambient water temperature – gives the Great White Shark a tremendous advantage when hunting. With muscles warmed and full of blood.

White Shark sizes

Length at birth from 100– 120cm
Maximum size around 700cm

Size at sexual maturity:
Female: 400 – 470cm.
Male 350 – 600cm
just like people do – have you ever noticed how a loving couple will have mms between them but two guys drinking in a bar will have several inches between their bodies. Great whites also have intimacy zones and will investigate an object or prey gradually.

Approaching
First they will swim past an object in a straight line keeping eye contact. Then they will do a “frontal checkout” where they will swim directly towards the subject turning and returning to original starting point. Purpose is to create a reaction. Next step is the “lateral checkout” where the shark approaches the subject diagonally and then turns. It appears that the shark knows what side it is on in relation to the subject.

When the shark does a “Go Around” it approaches from any direction, swims toward subject at a slight angle, circles and returns to original point of appearance. It may also do what is called “patrolling” - swimming in different patterns (except straight up) mostly at or beyond outer circle.

Then there is “Straight Up - Breaching” where the shark virtually rams the object out averting its upper jaw, whilst remaining still, the eye moves and follows the subject.

Eye Roll – With head and body remaining still, the eye moves and follows the subject.

Eye Back Roll – When a shark wants to protect its eye, usually just prior to an attack, or when the eyes passes the water/air barrier, it will roll its eye backwards so that the sclera - the protective outer layer - will be exposed protecting the eye itself.

Jaw Protrusion – The shark protrudes its upper jaw. This is part of the biting act, often noted when a shark wrangler touches the snout of a great white Shark.

Repellent Aerial Gaping [RAG] – The shark will conduct at least two successive mouth openings and partially closing of the mouth in quick succession. The second opening and closure can occur submerged. This is anticipation behaviour, where the shark expects that there is something within reach of its mouth and “will hit it” any second know.

Gaping – Partially opening its mouth without averting its upper jaw, whilst remaining in position. This can last between a fraction of a second and to several seconds. This is a threat behaviour and should be interpreted as a direct threat to oneself. I have on at least two occasions been open water (no cage) and have been on the receiving end of several gaps. Something that is guaranteed to make your life flash before your eyes!

Adopt A Shark! To commemorate Jaws, what better way to give something back by adopting a shark whether it is a White Great or any other species, checkout www.sharktrust.org or support conservation charities such as www.bite-back.com.

Next time you jump, dive, swim or scuba in the ocean don’t forget that more people are killed every year by falling coconuts than by shark attacks. We are only visitors to another World governed by different rules enjoy the ocean for all it has to offer.
Tasmania’s Southwest National Park and World Heritage Area is the land that time forgot, and most of the civilized world has never heard of Bathurst Harbour. It is the home of the world’s oldest living plant, Kings Holly (*Lomatatia tasmanica*) discovered in 1934 by the late Deny King, an environmentalist and local legend who lived in the area most of his adult life earning his living mining tin. On the banks of the Old River, bushwalkers able to penetrate the closely guarded secret location can admire a 10,500-year-old Huon Pine Tree. From the bird hide near the Melaleuca airstrip, you can watch the mating dance of a pair of orange bellied parrots, a species which breeds only in this region and has been saved from extinction by volunteers and the Tasmanian Parks and Wildlife Service. Apart from the rare flora and fauna, the landscape is as rugged and spectacular as any wilderness on earth.
But having set the scene in this remote corner of Tasmania’s world heritage area, we were not here for any of the above. We were on a mission for Japanese television, filming a documentary about the impact of the tannin-stained freshwater layer on the marine life that exists below it in Bathurst Harbour. Eaglehawk Dive Centre has conducted two successful underwater filming expeditions into this unique location. Both of these expeditions were adventures that most mere mortals only dream about. This story is of our most recent expedition with the Japanese national public broadcaster NHK / Science and Environment Division.

The Territory
Port Davey and Bathurst Harbour makes up a large and ecologically significant part of the Tasmanian World Heritage Area. The TWHA covers 20 percent of the Island State and encompasses a greater breadth of natural and cultural values than any other World Heritage Area on Earth, according to the Tasmanian Department Primary Industries Water and the Environment (DPIWE). The waterways were formed as the sea level rose after the last ice age flooding the river valleys with seawater, and the huge volume of black, tannin-stained freshwater flowing from the numerous rivers forming a dark freshwater layer over the top of the seawater. The freshwater layer, usually 2-6m thick, is so dark from the tannin that little light penetrates it. Below the tannin layer, the seawater is very clear but dark even on the sunniest of days, the light levels are so low that you cannot see without dive torches. This gives rise to a rare phenomenon called “deep water emergence”, where species usually found in deepwater (100m+) are found in much shallower water due to the low light levels.

In the Bathurst Channel, this phenomenon is enhanced due to Breaksea Island in the mouth of the Channel sheltering the Channel from wave action, so that the seafloor in the Channel is not only dark, it is also relatively calm—mimicking conditions on the “shelf-break”, the edge of the continental shelf and upper slope in depths of 80-200m, and the marine life we find living in the Bathurst Channel is typical “shelf-break” species. The Bathurst Channel/Harbour area is unique in a world context, a place where the unique southern Australian shelf-break species can be seen and studied in safe diving depths.

The first expedition
On our first expedition in 2002 for a smaller Japanese television company, we spent ten days diving and filming in almost perfect conditions. All equipment and personal were flown into the remote Melaleuca airstrip. Seven Cessna flights transported the team of eight Japanese, two Eaglehawk Dive Centre staff and the two Southern Explorer crew. It was a logistical drudge with the weather playing a significant part in delaying our departure from Hobart for the best part of two days. Flying conditions can change within minutes of locating the isolated airstrip adding unnecessary cost by returning to Hobart.

This expedition was different from many points of view: bigger budget, smaller crew, and most importantly, departing Hobart aboard the vessel we were to use for the duration of the stay in Bathurst Harbour. The abalone mother ship ODALISQUE was our chosen live aboard. She is a modern 18-metre aluminium vessel able to accommodate 12 passengers and crew in comfort, a large

Biscuit star, Tosia australis

Basket star, Conocladus australis
back deck with cradles for 15ft and 17ft aluminum dinghies, and two holds that kept our equipment and extra provisions below deck out of the weather.

The expected duration of twenty days in the wilderness required extensive and careful planning. To cater for five Japanese, two marine biologists, myself as dive guide and the ODALUSQUE’s crew of three (skipper, deckhand and cook) in a remote region that can only be reached by sea or light aircraft and is subject to extremes in weather, we had to be very well organized. We even took a washing machine. While the Japanese were over-equipped not knowing the isolation of the location, we managed to find a place to stow everything and to sail from Hobart at the appointed time. We had advised the film crew that we might have to wait in Recherche Bay if the weather on the south coast was as bad as forecasted by the Bureau of Meteorology. It was a little lumpy rounding Whale Head, but the vessel handled it well, and only a couple of the film crew took to their bunks.

We made a brief stop at Maatsuyker Island to film the huge colony of between 1000-1500 Australian fur seals at The Needles on the south side of the majestic rock that is home to a couple of volunteers who look after the heritage-listed light house and buildings.

The whole expedition nearly finished on that first day when Tomita, the cameraman, nearly drowned his digital beta-cam camera while traveling at dangerous speed in the dinghy in pursuit of a shot. Despite the conditions, Tom still managed to shoot some usable footage before the journey westward continued.

After a journey of about eight-hours from Hobart that included the stop at Maatsuyker Island, we entered beautiful Spain Bay near the entrance to the Bathurst Channel an hour before sunset and anchored for the night. Our chef, Johnno, knocked up a first class meal, and we were in bed reasonably early expecting an early start and a busy first day in Bathurst Harbour.

Karen Gowlett-Holmes, one of Eaglehawk
Dive Centre’s marine biologists, and I were acting as guides for this expedition. Karen had done a number of scientific research field trips to the area with CSIRO prior to our last filming expedition the previous year. I had worked in the area on several occasions during my ten years as an abalone diver. So, we were well acquainted with the difficulties of extended diving in such a remote location.

The Bathurst Channel
The Bathurst Channel has several heavily wooded islands that offer shallow water diving in beds of sea whips as shallow as 4m depth—these are usually at least 35m deep. We had a surprise when we entered the water—we found that the tannin layer was almost nonexistent.

There had been a prolonged drought in the area, which usually has rain virtually every day, and the flow of tannin-stained water from the surrounding rivers had dropped to a trickle. Usually, this site has a four to five metre deep dense tannin layer (like very strong black coffee) that blocks out all daylight and makes each dive as dark as night. But then the rain came, and came and kept coming for the next ten days. This created another set of problems, but it also gave the film crew a great example of how this bizarre ecosystem originates.

The falling rain soaks into the damp sponge-like peat below the living grass origination. The water has to flow through these marshy plains to reach the rivers and the sea. The decaying sponge-like peat below the living grass is in a constant state of decomposition. The rain saturates the damp plains and water starts to flow from every crack and crevice into every creek, river and eventually the harbour itself.

On its’ journey through this giant tea bag, the water colour darkens. Within 24 hours, the surface of the harbour was as black as the night sky. The film crew’s black mood lifted as if it was being transferred to the surrounding environment. The wind blew a gale and the conditions were generally appalling, but we were here to dive, and dive we did!

Diving in tannin
Dropping over the side of the dingy into the dark tannin layer can be rather daunting for those who have never experienced it before. Karen was first away while I geared up the two Japanese divers and over the side they went with me following minutes later. As I descended through the tannin, all sound had ceased except for that of my exhalation bubbles. Visibility seemed absolutely zero then at about three metres, I saw red lights below and off to my left. Then, I was into the clear salt water below the tannin layer. I flicked on my video light and circled the divers, watching them but avoiding the bottom silt, which I knew would lift like dust in wind if any part of my body or equipment touched it.

As I moved past the scene of silhouetted divers motionless behind the video lights, I imagined I was on the set of an X-Files movie. Dull red glow from the surface above contrasted with the bright scene in front of the stationary video lights on Tomita’s camera. Hand held by the divers, roving torch lights flashed this way and that around the dark-as-night perimeter as they each searched for subjects to study or photograph.

I moved away from them to seek out my own creatures, and as I headed down the slope into the dark, I was amazed to see the scene behind me only grew smaller rather than disappeared. Visibility horizontally was at least 30 metres, but the red surface glow faded away to black above me as I reached a depth of 12 metres. The slope leveled out and sea pens (Sarcoptilus grandis) started appearing on the silty bottom.
Tasmania

I saw a light moving away from the main group, so I headed parallel with it towards the seaward side of the island. Here, the current increased, and it was difficult to stay stationary while videoking. The wall and boulders above me were covered with bramble coral, large lace bryozoans and numerous ascidians some of which I hadn’t seen before. Below on the silty bottom, the occasional sea pen appeared like something from the “Day of the Triffids”.

The day after, we moved from site to site looking for any subject that was worthy, mostly keeping an eye out for the most elusive of marine animals found in the region—the Port Davey Skate—not seen in this area since 1990. One of the team who had accompanied us on this expedition was CSIRO marine biologist Michelle Treloar who was gathering vital information on this poorly known species. Her research aims to discover their abundance and distribution, whether there is a decline in the area of usable habitat, how vulnerable the species is to fishing pressure and whether populations are stable or declining.

The Maugean, or Port Davey, skate is listed as endangered on both Tasmanian and Commonwealth legislation. It is the world’s only entirely estuarine skate and the only Australian skate listed as endangered. It has only been found in two areas, Port Davey-Bathurst Harbour and Macquarie Harbour. This unique skate is easily recognised by its elongated snout. So, filming it in this habitat was one of the main aims of the film crew. Michelle and crewman Dave Denison were spending hours each day searching the inner harbour for this elusive beast.

Diving in a seawhip garden at only 6-8 metres deep, we find scores of basket stars living amongst them and clinging to their whips. They were in various stages of feeding with their arms outstretched. Basket stars usually react to any light by rapidly folding their arms and retreating, but here, having never seen light under the tannin layer, they just continued to feed unless we disturbed them, even when brightly lit with video lights.

Draughtboard sharks, large decorator crabs and southern rock lobster wandered about as though it was right secure from the threat of predators that would normally be evident in clear sunlit conditions.

Seapen beds

One of my favorite sites on my previous visit was the seapens beds near Beebey Point. Here, the 6-13 metre bottom was not in total darkness and the ambient light allowed divers to see several metres beyond the range of their lights.

The sea pens, some nearly half a metre tall, stand like sentinels to the ancient world that had existed here in the Precambrian Period more than 700 million years ago. I shot some of my best footage at this location. The Japanese cameraman looked at one sequence of nearly ten minutes following a skate through the forest of seapens with envy, as his subjects that day had not been as co-operative.

The mood at day’s end when things went well was nothing short of buoyant. The bar opened, and goodwill and friendly banter made the evening meal a very festive occasion. After several bottles of excellent red wine, we saw some of the results of the day’s shooting.

Forrester Point

The dive teams’ first dive at
Forrester Point was in very strong current as the wall drops down to about 25+ metres. This site has a small quantity of sea whips—including one species normally found in 200m+ in the open sea—feathery seafans, soft corals and other creatures that thrive in high current areas. As evidence that others had lived and worked in this region, I picked up a couple of old bottles that appeared to be discarded rubbish from the 1950’s.

The diving progressed with the channel giving us good results and interesting subjects. Some areas were off limits for future trips due to their extreme fragility. Beds of soft corals and delicate, fragile lace bryzoans that one lazy fin kick would obliterate exist in the inky black water down the Channel.

Captain Pete decided to tie up at Clayton’s Corner inside Kings Point. The Tasmanian Parks and Wildlife Service have upgraded the jetty that had originally been built by a local legend, Clyde Clayton, brother-in-law to Dennis King. Clyde’s house is still in use and fresh water is available from new tanks installed by volunteers to collect rain water from the roof of the house. This gave the whole crew a chance to go ashore and take in the wildlife and fantastic view from Henry’s Folly, the hill behind Clayton’s house.

After reviewing the day and another hearty meal, we planned our dives for the next day, then crawled into our bunks total exhausted.

The first dive of the new day was a bit of a failure as we went searching for the Port Davey Skate. We searched in an area north of the Celery Top Islands. The water here is only about 4-5 metres deep with a flat, silty bottom. We had planned to do a line search from north to south. I found it impossible to navigate, video and keep station with the divers to the left and right. The end result was no skates.

We had several night dives during the wild weather. As a result of the conditions, we nearly lost Karen when she was carried by the current the length of one of the islands in the Bathurst Channel.

The night was black as pitch and visibility reduced to less than 50 metres due to horizontal rain. I was driving the boat and trying to track the three divers in the shallow black water. I recovered the two Japanese divers and their camera gear, but they hadn’t seen Karen since very early in the dive. Karen is famous for economical air consumption, and I started searching for her around the area she had entered the water down to where I had picked up the other two. Each time I did a pass I extended the run, and after what seemed like hours, I saw a strobe flashing weakly through the squally black night. Karen was only metres from being swept around the end of the island and down into the main channel when I reached her. The marine area of Port Davey and Bathurst Harbour comprises some 17,000ha. It was lucky we found her when we did as it would have been very unhealthy to have spent the night bobbing about in the extreme conditions, and trying to get ashore over the jagged knife edged rocks would have been dangerous if not foolhardy.

Wrapping it up
After 13 days, my diving was finished, and I traveled up to the bush airstrip at Melaleuca to meet the aircraft bringing in my replacement, Mick Baron, another of the Eaglehawk team. Michelle and Johno were also flying out with me, and well-known Tasmanian marine biologist, Graham Edgar, and a new chef were replacing them. The strip was very busy, as there hadn’t been any flights for nearly a week due to the evil weather. Many of the bushwalkers, waiting for their flights back to civilization, had been living on a handful of boiled rice and water.

When my flight landed, Mick had all the little luxuries such as newspapers, fresh bread, fruit and vegetables, and beer to keep the Japanese happy. This was Mick’s first trip to the region and a chance for him to gain the skills and dive site knowledge for future expeditions. This area is so environmentally sensitive that eventually only approved guides will be allowed to lead dive trips into this region. Inexperienced divers should not be encouraged to dive in Bathurst Harbour without additional training. Even experienced divers should refresh their night diving and buoyancy skills. Some of the locations have been listed, as off limits to divers as any disturbance to the delicate marine ecosystem could have long-term consequences.

Seven days later, I met the ODALUSQUE as she returned to Hobart, again having extraordinary luck with the weather on the return trip. The tonnes of equipment were unloaded and returned to the dive center, and we all adjourned to the local sushi bar for a debriefing, dinner and drinks. We have seen the finished documentary (unfortunately only released in Japanese), which brings the scorecard up to 100% success for our two trips into the land that time forgot. My next trip is already in the planning stages and with luck, will be even better than the previous two. ■
History Aboriginal settlers arrived on the continent from Southeast Asia about 40,000 years before the first Europeans began exploration in the 17th century. No formal claims were made until 1770, when Capt. James COOK took possession in the name of Great Britain. Six colonies were created in the late 18th and 19th centuries; they federated and became the Commonwealth of Australia in 1901. The new country was able to take advantage of its natural resources in order to rapidly develop its agricultural and manufacturing industries and to make a major contribution to the British effort in World Wars I and II. Long-term concerns include pollution, particularly depletion of the ozone layer, and management and conservation of coastal areas, especially the Great Barrier Reef. A referendum to change Australia’s status, from a commonwealth headed by the British monarch to a republic, was defeated in 1999. Government: democratic, federal-state system recognizing the British monarch as sovereign

Geography Tasmania covers a land area of 68,332 sq km (26,383 sq. miles). Its terrain ranges from mountains, lakes, rivers and waterfalls to dense rain forest. Tasmania has over 2000 km of walking tracks and 18 national parks. The Tasmanian Wilderness World Heritage Area covers 1.38 million hectares. Natural resources: bauxite, coal, iron ore, copper, tin, silver, uranium, nickel, tungsten, mineral sands, lead, zinc, diamonds, natural gas, petroleum. Agriculture: wheat, barley, sugarcane, fruits; cattle, sheep, poultry; Industry: mining, industrial and transportation equipment, food processing, chemicals, steel. Exports: coal, gold, meat, wool, alumina, iron ore, wheat, machinery and transportation equipment

Climate Of all the Australian capital cities, Hobart has the nation’s second-lowest rainfall (626 mm or 24 inches). The average summer temperature is 21°C (70°F). Winter’s average is 12°C (52°F). Natural hazards: cyclones along the coast; severe droughts; forest fires

Population The population of Tasmania is 472,000. Main centers are Hobart (the capital city with 195,500 people) Launceston (98,500) and Devonport (25,000). Ethnicity: Caucasian 92%, Asian 7%, aboriginal and other 1%; Religions: Anglican 26.1%, Roman Catholic 26%, other Christian 24.3%, non-Christian 11%, other 12.6%

Currency Australian Dollar (AUD$)

Language English

Diving Colorful sponges, anemones, lots of seaweed including giant kelp forests. Dive comfortably all year in a 7mm wet suit.

Electricity 220-240V AC, 50 Hz. Plugs have three flat pins. A socket converter can be bought for approximately $8-10 AUD.

Web sites Tasmania Tourism www.discovertasmania.com.au
Port Arthur Region www.portarthur-region.com.au
Dive Operators Eaglehawk Dive Centre www.eaglehawkdive.com.au
Clownfish sea anemones usually live solitary lives. On many coral reefs there will normally be only one individual for each 50 to 100 meters, perhaps 10 to 20 meters of reef. But occasionally groups of up to several hundreds of clownfish sea anemones are found together within a small area in an assemblage we call anemone cities.

Anemone cities are not unusual in some places. However, these large assemblages are rare compared to the high abundance of solitary giant sea anemones you may find snorkeling or diving on most tropical shallow coral reefs. There are only two known such assemblages in the bay of Aqaba in the Red Sea.

One is at Ras Muhammad close to the popular dive resort Sharm el Sheik, where it is but one of the many popular dive sites in the area and well visited by many divers being completely oblivious to the fact that they are diving on a rather unique and fragile structure.

They are also found in some parts of Southern Japan, in the eastern area of the Pacific and certain parts of the Indian Ocean. Perhaps the largest tropical sea anemone assemblage in the world covering about 2 km2 of sea bottom lives in central Indonesia. This anemone city was recently described by the renowned German underwater photographer Helmut Debelius in his Asian underwater guide.

Super structures
Anemone cities are not well understood, but clearly something very different goes on here. Little is known about the structure and distribution of these dense sea anemone assemblages and what kind of impact the unusually high concentration of host anemones have on the local ecology—especially the settlement, reproduction and behavior of the symbiotic fishes and crustaceans. Most research studies have, so far, only studied the biology of solitary host sea anemones simply because the necessary resources, manpower and funding are still not readily available in coral reef research. This is rather unfortunate as unusually large “super-structures” in nature, such as the anemone city at Ras Mohammed at the tip of Sinai peninsula, may provide us with a much better understanding of both fish and sea anemone biology.

Microhabitat
The point is that whatever regulates or limits the abundance of a species and their reproductive success is highly related to the extent of its microhabitat. In this case, the microhabitat for a clownfish is its host anemone and the few meters of coral reef surrounding the sea anemone. Usually a single anemone. So, when

The Danish scientist Ms. Thea Marie Brolund, assisted by Anders Tychsen and Michael Arvedlund recently conducted the first comprehensive scientific examination of the popular dive spot in South Sinai, called “anemone city”, a dive site often described and recommended as an excellent dive experience in most popular Red Sea dive guides.
nature comes up with an unusual super-structure such as an anemone city, all the usual dynamics and relationships between the organisms in the microhabitat are bound to change drastically. New and more complex interactions arise between the surroundings, the fish, the crustaceans and the anemone hosts, and we see marked changes in physiological and behavioral patterns. These characteristics can be quite obvious to the observing visitor diving.

Exactly which patterns, when, where and why this complexity and infrastructure is put together is something we know practically nothing about. This gives cause for great concern as these rare structures are at great risk of disappearing in front of our very eyes due to heavy loads of ignorant visiting scuba divers.

At risk
The popular Aqaba anemone

Dive up close with an unusual pink variety (H. crispa is normally grey in color) of the clownfish sea anemone _Heteractis crispa_, from a shallow coral reef in the southern Japan

Closeup of an unusual pink variety (H. crispa is normally grey in color) of the clownfish sea anemone _Heteractis crispa_, from a shallow coral reef in the southern Japan

At risk
The popular Aqaba anemone

Dive up close with an unusual pink variety (H. crispa is normally grey in color) of the clownfish sea anemone _Heteractis crispa_, from a shallow coral reef in the southern Japan

Dive up close with an unusual pink variety (H. crispa is normally grey in color) of the clownfish sea anemone _Heteractis crispa_, from a shallow coral reef in the southern Japan

City assemblage of the magnificent sea anemones (_Heteractis magnifica_), for example, found at the southernmost point of the Sinai Peninsula, northern Red Sea. It is situated on a reef approximately 150 meters east of the popular Shark and Yolanda Reef. At present, about 20-30 large diveboats with up to 300 divers and 1500 snorkellers visit this magnificent superstructure every day. Most of these visitors have absolutely no education in proper behavior on coral reefs.

And the carrying capacity of daily visitors to any one anemone city may only be 1/10 of the present load. Consequently, the risk of this anemone city disappearing forever within the next decade or two is very real. Despite these facts, the first scientific study ever of Sinai’s “anemone city” did not take place until the summer of 2002 when a Danish research team visited the site. This article is the summary of that study.3

Anemone city at Ras Muhammad consists of massive amounts of the clownfish sea anemones and consequently also the local two-bandied anemonefish _Amphiprion bicinctus_.

The popular dive sites around Sinai get visited by dozens of dive boats every day and the three spot damsel fish (Dascyllus hemprichii). The former are obligate symbionts in host sea anemones and the latter are facultative symbionts as juveniles in host sea anemones. (See explanation in sidebar.)

Location

More precisely, anemone city is situated on an underwater plateau of approximately 100 x 75 meters stretching down to an approximate 20-meter depth. It begins at a depth of about 2 meters beneath a vertical coral wall from there it drops down to 7-9 meters at an angle of 30-45°. From this depth to approximately 20 meters, the plateau is relatively horizontal, sloping only 5-15°. At approximately 20 meters, it ends in a rather sharply defined drop-off which plunges to a depth of about 800 meters. This is clearly not the place to drop your camera. A total of 190 large clownfish sea anemones were counted here. Some were solitary, and some were clusters of presumably clonal morphs (offspring produced from “buds”).

Record

The anemones were distributed from a depth of 3 meters down to about 40 meters, which is a new record for the species magnificient sea anemone.

Symbiosis

Means “life-together”. It exists in several forms. In *mutualism*, both species are benefiting from their association. In *commensalism*, one species gains an advantage while the other is neither benefitted nor harmed. In *parasitism*, one species gains at the expense of the other.

An *obligant symbiont* is one who can’t live without its associated species, whereas a *facultative symbiont* may benefit from the association but also live without.
Why here?
Perhaps this is because of the very clear water almost devoid of terrestrial and freshwater input. Simultaneously, the location of this anemone assemblage renders it subject to unusual and sometimes strong currents. The major currents pass in the surface waters up the Gulf of Suez and the Gulf of Aqaba (the latter primarily via the Strait of Tiran) resulting in upwelling of nutrition-rich waters especially from the deep waters of the Gulf of Aqaba.

Currents matter
These nutrition-rich currents pass right by the anemone assemblage at Ras Mohammed. At 22-24 meters of depth, approximately at the edge of the plateau where it dropped to vertical the reef was devoid of anemones. Perhaps their absence was caused by the stronger currents here. In the same manner, there were few anemones above 9 meters depth, where there was heavy wave-induced surges. However, the solitary anemone exposed to the surges at 3 meters depth seemed to cope well with it; it was one of the largest anemones of the entire assembly.

Are the fish the cause or result?
Factors contributing to the existence of these superstructures of sea anemones may be the relatively large schools of the three spot damselfish. Recently, Israeli experiments have shown that the giant sea anemone E. quadracolor are benefiting from their mutualistic symbiosis with the fishes, to such a degree that the growth rate is significantly hampered, if the anemonefish are removed from the host anemone.

This result may lead to the specula-
tion that the large shoals of three spot damselfish increase the assemblage in a mutualistic positive feedback between anemone and fish. This could perhaps be based on increased amounts of ammonium, nitrate and phosphate, which are likely to be found here. This is merely speculation, however.

Feedback
What are the ecological feedback mechanisms between these fish and anemones? Do more fish lead to more anemones, which in turn lead to more fish? If the above thoughts seem to be true, how are they related to the question of clonality in H. magnifica and its distribution pattern? Do the abundance of anemones and anemonefish result in unusual adour plumes to the surrounding waters? Since anemonefish depend on olfactory cues to finding their host anemones at settlement, might one expect altered settlement patterns of anemonefish on reefs with anemone assemblages?

What do we know?
The distribution and abundance of the species magnificent sea anemone, which is the “anemone city” species in the Gulf of Aqaba, was quite different from most other giant sea anemone species in Aqaba. Magnificent sea anemones (H. magnifica) are found in only two relatively large assemblages in the southern part, Anemone City, and a few solitary individuals at Ras Ghashani a few kilometers north of Ras Mohammed.

Magnificent sea anemones are found in only two relatively large assemblages in the southern part

Three-spotted damselfish

Usually magnificent sea anemones are only found above 20 meters of depth. H. magnifica is distributed from the eastern Pacific to the western Indian Ocean and the Red Sea. However, it reproduces asexually only in the rim areas of its distribution i.e. the Red Sea and the eastern Pacific Ocean. Incidentally, this distribution seems also to apply to magnificent sea anemone assemblages. Thus, the origin of the large aggregations of magnificent sea anemones is probably the asexual reproduction rather than settling of young sexually reproduced anemone polyps.

Lots of fish to see
At this particular anemone city, the researchers counted nearly 2000 individual three spot damselfish hovering above the sea anemones. That is a lot of fish. The largest specimens of three spot damselfish were never seen among the anemone tentacles, but adult three spot damselfish will sometimes stay in groups in the vicinity of the host anemone, however they do not associate with them, and are not protected from the anemo- ne nematocysts.

“Gangs and territories”
The total number of recorded two-banded anemonefish was 243, of which 91 were dominant. A fish territory could consist of any combination of solitary and clustering host sea anemones. Usually, it consisted of a cluster and some nearby solitary sea anemones. Usually, territories of dominant and sub-dominant two-banded anemonefish covered the same area. The territories of two-banded anemonefish and three spot damselfish were often overlapping as the group of three spot damselfish would

A closeup of the Red Sea anemonefish Amphiprion bicinctus in an anemone city anemone Heteractis magnifica
From an anemone city in Southern Japan, Ryukyus Arhipelago Hizushi Beach. Sea anemones of the species *Stichodatyla mertensii* and two clownfish of the species *Amphiprion sandaracinos*. Depth 5.7 meters. This species of anemones do not form anemone cities.

The territorial behaviour of anemonefish seem to be highly plastic; the intra- and interspecific territorial behaviour may depend more on the local distribution pattern, number and size of the host anemones, than perhaps on the anemonefish species.

The significance

The unusual large structure and many inhabitants of Sinai’s Anemone City may be the source for new generations of clownfish and sea anemones in most of the Gulf of Aqaba due to its size and placement in string currents from southern Red Sea leading into the straits of Tiran. Therefore, further protection of Anemone City is most likely an urgent matter. Unfortunately, the environment of the Ras Mohammed National Park is under increasing stress from pollution largely generated by the local tourist industry. Although impressive, the anemones of the assemblage were fewer and the surrounding corals more stressed than just a few years back.

Remaining question: Why do only some species form anemone cities?

Two banded anemone fish peeks out of a magnificent sea anemone in Sinai’s Anemone City

Two banded anemonefish

Hovering groups

Apart from the smallest specimens, the three spot damselfish all behaved almost alike in hovering in larger or smaller groups ½-2 meters above the anemones, forming some very large groups below 10 meters. When disturbed the three spot damselfish groups would perform a synchronized rapid descent towards the host anemones.

The anemonefish

The two-banded anemonefish usually swam closer to the host anemones than the three spot damselfish. Usually, the large sub-dominant two-banded anemonefish were farthest away; they usually covered the whole territory with the biggest fish swimming the furthest. Small sub-dominant two-banded anemonefish were rarely observed more than ½ meters from the host anemones.

In Anemone City, these adults intermingled with the groups of juvenile three spot damselfish. The territory borders seemed well-defined though no aggressive displays were observed between territories. The fish just did not cross certain borders.

The territorial behaviour of anemonefish seems to be highly plastic; the intra- and interspecific territorial behaviour may depend more on the local distribution pattern, number and size of the host anemones, than perhaps on the anemonefish species.

The significance

The unusual large structure and many inhabitants of Sinai’s Anemone City may be the source for new generations of clownfish and sea anemones in most of the Gulf of Aqaba due to its size and placement in string currents from southern Red Sea leading into the straits of Tiran.

Therefore, further protection of Anemone City is most likely an urgent matter. Unfortunately, the environment of the Ras Mohammed National Park is under increasing stress from pollution largely generated by the local tourist industry. Although impressive, the anemones of the assemblage were fewer and the surrounding corals more stressed than just a few years back.

The end result is effective and gentle, hypoallergenic as well as non-toxic for you and safe for the environment.

Bugs Hate Us!

You’re going to love us!!

This unique all natural product is hated by mosquitoes, ticks, fleas, and other annoying bugs, and will be loved by you.

Made from a combination of plant extracts – pure essential oils of citronella, mint, cedar and/or eucalyptus are combined with an alcohol tincture of gavilane for multi-layered protection, offering a 100% natural product. Aloe vera extract and soy oil form a moisturizing and skin-conditioning base. The formula is pH buffered to maintain your skin’s natural balance.

The end result is effective and gentle, hypoallergenic as well as nontoxic for you and safe for the environment.

877-32-GREEN

www.herbaldefenseonline.com

“The best defense is to not get bit”

...so you can enjoy the great outdoors without worry

On Sale Now!!

Save on Shipping!! Purchase 3 for shipping cost of one!
Loch Ness Muenster?
800kg of underwater cheese gets away

Search for sunken Cheddar treasure continues

A man who dumped 800 kg of cheese into the depths of a Canadian lake in hopes of making a better Cheddar has lost his cache. Divers who searched up to 40m depths in the suspected area several times came up empty-handed. Luc Boivin, a fourth-generation owner of a dairy in northeastern Canada, said he was sure the cheese would turn up eventually.

Regardless of whether Boivin finds his cheddar or not, the Canadian Food Inspection Agency said he could not sell it to consumers since his experiment in aging the cheese was not conducted under controllable and verifiable conditions. According to local reporters, the agency said the cheese production had to be carried out in licensed, fully hygienic facilities in order to be considered for commercial sale. That pretty much rules out cheese aged at the bottom of a lake.

The entire cheddar affair started a few years ago when a fisherman approached Boivin and convinced him that stowing his cheese at 40m in a lake would help make a good cheese great. Boivin looked into the matter and concluded that the water pressure would accelerate the ageing process of the cheddar while keeping the cheese in perfectly cool temperatures.

Last year, Boivin tossed 10 barrels of his family business’ cheese overboard into the Baie des Ha! Ha! on the Saguenay River about 200 km north of Quebec. It appears the bay has had the last laugh. Boivin said he expected to lose some of the cheese during the course of the experiment, but not the whole ton of cheddar.
Navy acquires mine-sniffing sea robots

Ten battery-powered Remote Environmental Monitoring Units, or Remus, have been bought by the Royal Navy in the UK. They will be employed to hunt down sea mines. It is the first time the Navy will use unmanned vehicles capable of detecting mines in shallow water.

Manufactured by Hydroid Inc as part of a £2.75m programme, the robots are expected to stay in service until 2011. The 1.6m long torpedo-shaped vehicles using advanced detectors to pin-point locations of mines at up to 100m depths will take over very dangerous work that used to be done by divers. Sea mines are a great menace to naval forces because they are easy to plant and cheap to build, but very difficult to find. The mine-sniffing robots will also be used in search and salvage operations as well as protecting harbours and ports against terrorist attacks according to Defence Procurement Minister Lord Drayson. However, the task of clearing mines still falls upon the shoulders of human divers.

TEXTING NETS 7 illegal fishermen

Thousands of juvenile fish were saved by five text messages when a team of Maritime Police apprehended a boat fishing illegally in the city waters of Glan in the Philippines. Local fishermen in the area overheard a conversation between the poachers that spurred them to forward a warning to the provincial capital. Sarangani Bay Governor Miguel Dominguez and police authorities received the message and directed Glan police to take action. The illegal fishermen were using a banned fishnet known locally as Likos or Tapsay. Seven persons aboard the M/B Beverly 8 were caught operating within restricted waters. According to a police spokesperson, the maritime police are enforcing local regulations in order to protect small fishermen.

Hyperbaric oxygen therapy is now available for horses. Long known for its healing benefits to human beings, veterinarian researchers are now applying decompression treatments to injured horses. According to medical experts, HBOT helps salvage and heal injured tissues, shortening recovery time and saving functional tissues around an injury. It has been shown to help boost the immune system to counter bacterial infection and enhance the effects of certain antibiotics. While wounds are the most common ailment treated with HBOT in humans, bone and joint infections, common in foals, and muscle infections from Clostridial infections, which are secondary to injection reactions, have also seen improvement with the treatment. Now horses are receiving the benefits of HBOT in cases involving traumatic injuries, bone and joint infections common in foals, and muscle infections from Clostridial infections, which are secondary to injection reactions. Further research in the use of HBOT technology is expected to transform how veterinary medicine approaches the treatment of injuries in horses through the optimization of the healing process.

Deco chamber for Horses?

Ten battery-powered Remote Environmental Monitoring Units, or Remus, have been bought by the Royal Navy in the UK. They were used to hunt down sea mines. It is the first time the Navy will use unmanned vehicles capable of detecting mines in shallow water. The robots were manufactured by Hydroid Inc as part of a £2.75m programme, expected to stay in service until 2011.

Texting nets 7 illegal fishermen

Thousands of juvenile fish were saved by five text messages when a team of Maritime Police apprehended a boat fishing illegally in the city waters of Glan in the Philippines. Local fishermen in the area overheard a conversation between the poachers that spurred them to forward a warning to the provincial capital. Sarangani Bay Governor Miguel Dominguez and police authorities received the message and directed Glan police to take action. The illegal fishermen were using a banned fishnet known locally as Likos or Tapsay. Seven persons aboard the M/B Beverly 8 were caught operating within restricted waters. According to a police spokesperson, the maritime police are enforcing local regulations in order to protect small fishermen.

Hyperbaric oxygen therapy is now available for horses. Long known for its healing benefits to human beings, veterinarian researchers are now applying decompression treatments to injured horses. According to medical experts, HBOT helps salvage and heal injured tissues, shortening recovery time and saving functional tissues around an injury. It has been shown to help boost the immune system to counter bacterial infection and enhance the effects of certain antibiotics. While wounds are the most common ailment treated with HBOT in humans, bone and joint infections, common in foals, and muscle infections from Clostridial infections, which are secondary to injection reactions, have also seen improvement with the treatment. Now horses are receiving the benefits of HBOT in cases involving traumatic injuries, bone and joint infections common in foals, and muscle infections from Clostridial infections, which are secondary to injection reactions. Further research in the use of HBOT technology is expected to transform how veterinary medicine approaches the treatment of injuries in horses through the optimization of the healing process.
Twentyfive years ago I made a film called the *Ocean's Daughter*, that tried, in my own small way, to add a voice to the growing calls to protect our planetary future. It was a film that tried to express the sacredness of life and the magical beauty of nature and the fact that we, as humans, were in danger of destroying ourselves, before we had the chance to evolve into mature adulthood as a species.

It would be tragic indeed, if future generations were forced to live under inhospitable planetary conditions and never witness the wonders of nature we have experienced, except by watching the films from our era. They would be like the visual fossil record of what once was but is forever gone.

If we look at the big picture, all across the world, development and environmental organizations are underfunded. In a world where on the same day we celebrate record highs in the stock market, 40,000 children were born...
dren die from hunger, at a time when governments do not have the resources to meet the urgent needs in their own country much less the rest of the world. Species extinction is reaching epidemic proportions as ecosystems are rapidly disappearing from insensitive development and pollution. We are caught in the clutches of an economic system that operates beyond the control of even the president of the United States, and is at the present time crushing life from us and from this planet.

I once looked out at the world with despair, until one day, quite by chance I woke up to an idea that makes it financially viable for business to help fund solutions to global problems, in a way that will reward their investors, increase their profit and liberate new resources for the task of global regeneration. As one who has made a living from the ocean, I feel a deep sense of responsibility to do everything I can to make a difference. Though the hour is late, there is still time for us to turn things around.

In Antibes, three years ago, I voiced an idea to marine architect Jacques Rougerie and Andre Laban, the famous diving legend, about an idea that could really make a difference. It is called the Blu Revolution and is designed to breath life back into
the ocean, create new habitats, and revitalize fishing communities around the globe, in an attempt to preserve our ocean heritage and restore it as a source of food to feed the hungry.

As things stand, many fish species are becoming toxic with pollutants, fish stocks are declining from overfishing and destructive industrial fishing techniques, and across the planet spawning grounds and habitats are being destroyed by trawl nets. This is turning the ecosystems on the continental shelf into a desert.

Imagine the public response if the United Nations, or other such body, guided by a scientific council, were to initiate a global program to restore life to the ocean: Imagine that we were to construct artificial reefs in suitable materials that could provide work for idle fishing fleets, and create a new global industry designed to reverse the destruction and provide a haven for wildlife to flourish.

Imagine business leaders got involved as they realized that to do so would be rewarded with public recognition, respect and an increase in profit.

Imagine too, that plastic manufacturers were to recognize that they could take responsibility for their plastic, at present is either buried in rapidly filling landfill sites or being burned, and instead recycle it in an exciting and life-creating way.

Plastic manufacturers could work alongside marine architects to develop the technology to convert waste plastic into nontoxic re-moldable forms. These could be created as large structures of great intrinsic beauty that would soon become covered in marine life, and the nonbiodegradable quality of the plastic would become an asset. It could support the habitat indefinitely, instead of rusting away as ships do when they are sunk for the same purpose.

It would mobilize fishing fleets and breathe new life into fishing communities around the world, as they set to the task of restoring the ecosystems of the continental shelf, where each year an area the size of the United States is destroyed by trawl nets dragging the bottom, crushing the marine habitat.

It the creation of floating architecture might even augur a new epoch of oceanic exploration where
the concerns raised by Jacques Yves Cousteau are finally addressed and the visions of great men, like Commander Philippe Taillez’s Archipelago, become a reality.

For this to occur, a new level of international cooperation will have to be forged, where people set aside their differences and work together for the common good. I know that across all nations of the world, divers are united by their love of life and the ocean. They work in corporations and government and come from every walk of life. It is to them that I now speak because they have within them the power to make a positive difference for the benefit of everybody.

I ask you to go to www.BluRevolution.com and hear about The Genesis Project in a talk I gave at the open university in the United Kingdom. I ask you to listen to the idea with an open mind. This strategy makes it viable for companies to save lives, protect nature, initiate necessary technology to end pollution and cancel their carbon dioxide debt to the world. The Genesis Project involves funding global reforestation or preserving huge tracts of rainforest to prevent it being cut down. I am informed that 90% of the coral reefs are dying from rising sea temperatures. This strategy can at least slow that process down and give us all a chance to breathe again. It can create the space for a coordinated global effort that will bring us all closer together as we heal this world before we destroy it and ourselves along with it.

Research shows that people will support companies willing to help the world when they witness the good that is being achieved. The involvement of business leaders will help focus political will where it is needed. Perhaps we might even discover that we need a new concept for what constitutes global security in the 21st century, in the form of a world that works together for the common good, and the concept of the family of Man can then become a practical working reality.

If you agree with what is said please share The Genesis Project and the Blu Revolution with everyone you know, so that a focussed dialogue can finally be opened that will result in the implementation of the necessary remedial measures before we go past the point of no return. Once that point is reached it is over!

Portelly will be honoured at this year’s Festival of Underwater Images in Antibes, France, to mark 25 years since his ground-breaking film hit the silver screen.
Advertise

Thousands of readers in over 70 countries

INTERACTIVE ADS

COMPETITIVE RATES

AMERICA EUROPE ASIA

www.xray-mag.com

LINK TO MEDIA KIT

X-RAY MAG is distributed six times per year on the Internet. © 2005 X-RAY MAG. All rights reserved. Material in this publication may not be reproduced or transferred electronically in any form without written permission. Views and information expressed in articles are those of the individual author and are not necessarily representative of views held by X-RAY MAG or its affiliates. Unsolicited manuscripts, photographs and illustrations should be emailed to gymes@xray-mag.com. X-RAY MAG accepts no responsibility for unsolicited materials sent to its office, nor is it liable for loss or damage to such materials. X-RAY MAG observes a strict privacy policy. No personal or private information will be shared with a third party without the written permission of the owner.